An efficient pipeline processing scheme for programming Protocol-independent Packet Processors

2020 ◽  
Vol 171 ◽  
pp. 102806
Author(s):  
Shu Yang ◽  
Lu Bai ◽  
Laizhong Cui ◽  
Zhongxing Ming ◽  
Yulei Wu ◽  
...  
1991 ◽  
Vol 138 (6) ◽  
pp. 393
Author(s):  
B.T. Meggitt ◽  
W.J.O. Boyle ◽  
K.T.V. Grattan ◽  
A.E. Baruch ◽  
A.W. Palmer

1995 ◽  
Vol 34 (04) ◽  
pp. 345-351 ◽  
Author(s):  
A. Burgun ◽  
L. P. Seka ◽  
D. Delamarre ◽  
P. Le Beux

Abstract:In medicine, as in other domains, indexing and classification is a natural human task which is used for information retrieval and representation. In the medical field, encoding of patient discharge summaries is still a manual time-consuming task. This paper describes an automated coding system of patient discharge summaries from the field of coronary diseases into the ICD-9-CM classification. The system is developed in the context of the European AIM MENELAS project, a natural-language understanding system which uses the conceptual-graph formalism. Indexing is performed by using a two-step processing scheme; a first recognition stage is implemented by a matching procedure and a secondary selection stage is made according to the coding priorities. We show the general features of the necessary translation of the classification terms in the conceptual-graph model, and for the coding rules compliance. An advantage of the system is to provide an objective evaluation and assessment procedure for natural-language understanding.


Author(s):  
S. Chef ◽  
C. T. Chua ◽  
C. L. Gan

Abstract Limited spatial resolution and low signal to noise ratio are some of the main challenges in optical signal observation, especially for photon emission microscopy. As dynamic emission signals are generated in a 3D space, the use of the time dimension in addition to space enables a better localization of switching events. It can actually be used to infer information with a precision above the resolution limits of the acquired signals. Taking advantage of this property, we report on a post-acquisition processing scheme to generate emission images with a better image resolution than the initial acquisition.


2013 ◽  
Vol 380-384 ◽  
pp. 186-190
Author(s):  
Ya Nan Huang ◽  
Da Lu Liu ◽  
Feng Sheng Sun ◽  
Yu Wang ◽  
Ming Xing Gao

When comparing with ship construction within newly-built docks or on tilting slipways, ship constructing on the flat earth method can be said to be a new ship-building technique by which ship is built on a platform and launched with the aid of floating-dock or barge. Some obvious advantages of this technique are such as less investment in basic facilities, low production cost, high production efficiency, wide applicability of ship types, ability to overcome the bottle-neck effect of berths and docks. In this paper, a bulk-carrier being taken as an example, the design of launching processing scheme on the horizontal shipway includes calculation of launching weight and determination of hoisting force during the whole towing period. The whole towing process of hull can be divided into three stages, the first is from the static state to the moment of beginning to move, the second is from the initial position of movement to the front of slipway onto which the hull is predicted to be pulled, and the third is from the front of slipway to the designated position on the floating dock. Subsequently, after the hull being sealed and positioned correctly, the floating dock for launching may be towed to deeper water zone and the hull can be buoyed up on the water surface, and the whole launching process can be completed. From the research, the conclusion is made that the launching technique of this paper is available and feasible. Especially, this paper is the initial application of this method on the 15000t launching ship home and has the epoch-making sense.


2021 ◽  
Vol 62 (3) ◽  
Author(s):  
Theo Käufer ◽  
Jörg König ◽  
Christian Cierpka

Abstract Recently, large progress was made in the development towards low-cost PIV (Particle Image Velocimetry) for industrial and educational applications. This paper presents the use of two low-cost action cameras for stereoscopic planar PIV. A continuous wave laser or alternatively an LED was used for illumination and pulsed by a frequency generator. A slight detuning of the light pulsation and camera frame rate minimizes systematic errors by the rolling shutter effect and allows for the synchronization of both cameras by postprocessing without the need of hardware synchronization. The setup was successfully qualified on a rotating particle pattern in a planar and stereoscopic configuration as well as on the jet of an aquarium pump. Since action cameras are intended to be used at outdoor activities, they are small, very robust and work autarkic. In conjunction with the synchronization and image pre-processing scheme presented herein, those cameras enable stereoscopic PIV in harsh environments and even on moving experiments. Graphic abstract


Author(s):  
Chao-Yaug Liao ◽  
Jean-Claude Léon ◽  
Cédric Masclet ◽  
Michel Bouriau ◽  
Patrice L. Baldeck ◽  
...  

Based on the two-photon polymerization technique, an analysis of product shapes is performed so that their digital manufacturing models can be efficiently processed for micromanufacture. To describe microstructures, this analysis shows that nonmanifold models are of interest. These models can be intuitively understood as combinations of wires, surfaces, and volumes. Minimum acceptable wall thickness, wire dimension, and laser density of energy are among the elements justifying this category of models. Taking into account this requirement, a model preparation and processing scheme is proposed that widens the laser beam trajectories with a concept of extended layer manufacturing technique. A tessellation process suited for non-manifold models has been developed for computer-aided design models imported from standard for the exchange of product files. After tessellation, several polyhedral subdomains form a nonmanifold polyhedron. To plan the trajectories of the laser beam, adaptive slicing and global 3D hatching processes as well as a “welding” process (for joining subdomains of different dimensionality) have been combined. Finally, two nonmanifold microstructures are fabricated according to the proposed model preparation and processing scheme.


Author(s):  
Abhishek K. Singh ◽  
Suraj C. Zunjarrao ◽  
Raman P. Singh

Ceramic composite pellets consisting of uranium oxide, U3O8, particles in a silicon carbide matrix are fabricated using a novel processing technique based on polymer infiltration and pyrolysis (PIP). In this process, spherical particles of depleted uranium oxide, in the form of U3O8, are dispersed in liquid allylhydridopolycarbosilane (AHPCS), and subjected to pyrolysis up to 900°C under a continuous flow of ultra high purity (UHP) argon. Pyrolysis of AHPCS produces near-stoichiometric amorphous SiC at 900°C. Multiple polymer infiltration and pyrolysis (PIP) cycles are required to minimize open porosity and densify the silicon carbide matrix, in order to enhance the mechanical strength of the material. Structural characterization is carried out after first pyrolysis to investigate chemical interaction between U3O8 and SiC. The physical and mechanical properties are also quantified, and it is shown that this processing scheme promotes uniform distribution of uranium fuel source along with a high ceramic yield of the parent matrix. Furthermore, the processing technique involves lower energy requirements than conventional sintering processes currently in practice.


Sign in / Sign up

Export Citation Format

Share Document