ceramic yield
Recently Published Documents


TOTAL DOCUMENTS

59
(FIVE YEARS 13)

H-INDEX

9
(FIVE YEARS 2)

Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2424
Author(s):  
Afnan Qazzazie-Hauser ◽  
Kirsten Honnef ◽  
Thomas Hanemann

Polymer-derived ceramics (PDCs) based on silicon precursor represent an outstanding material for ceramic coatings thanks to their extraordinary versatile processibility. A promising example of a silicone precursor, polyorganosilazane (Durazane 1800), was studied concerning its crosslinking behavior by mixing it with three different photoinitiators, and curing it by two different UV-LED sources under both nitrogen and ambient atmosphere. The chemical conversion during polymerization and pyrolysis was monitored by FTIR spectroscopy. Pyrolysis was performed in a nitrogen atmosphere at 950 °C. The results demonstrate that polyorganosilazane can be cured by the energy-efficient UV-LED source at room temperature in nitrogen and ambient atmosphere. In nitrogen atmosphere, already common reactions for polysilazanes, including polyaddition of the vinyl group, dehydrogenation reactions, hydrosilylation, and transamination reaction, are responsible for crosslinking. Meanwhile, in ambient atmosphere, hydrolysis and polycondensation reactions occur next to the aforementioned reactions. In addition, the type of photoinitiator has an influence on the conversion of the reactive bonds and the chemical composition of the resulting ceramic. Furthermore, thermogravimetric analysis (TGA) was conducted in order to measure the ceramic yield of the cured samples as well as to study their decomposition. The ceramic yield was observed in the range of 72 to 78% depending on the composition and the curing atmosphere. The curing atmosphere significantly impacts the chemical composition of the resulting ceramics. Depending on the chosen atmosphere, either silicon carbonitride (SiCN) or a partially oxidized SiCN(O) can be produced.


Author(s):  
Zhijun Ruan ◽  
Can Wang ◽  
Jie Wang ◽  
Qian Wang ◽  
Xuefei Tan ◽  
...  

For the first time, POSS and cobalt containing hyperbranched polymer (HP2-Co) was synthesized via a convenient A2+B3 strategy for solid-state pyrolysis to generate magnetoceramics. For comparison, its analogue (HP1-Co) without...


2020 ◽  
Vol 46 (17) ◽  
pp. 27426-27436
Author(s):  
Kun Zhuang ◽  
Shuyu Lin ◽  
Wenyan Huang ◽  
Liang Liao ◽  
Yinong Zheng ◽  
...  

Author(s):  
Bowen Chen ◽  
Qi Ding ◽  
Dewei Ni ◽  
Hongda Wang ◽  
Yusheng Ding ◽  
...  

AbstractIn this work, three-dimensional (3D) Cf/SiBCN composites were fabricated by polymer infiltration and pyrolysis (PIP) with poly(methylvinyl)borosilazane as SiBCN precursor. The 3D microstructure evolution process of the composites was investigated by an advanced X-ray computed tomography (XCT). The effect of dicumyl peroxide (DCP) initiator addition on the crosslinking process, microstructure evolution, and mechanical properties of the composites were uncovered. With the addition of a DCP initiator, the liquid precursor can cross-linking to solid-state at 120 °C. Moreover, DCP addition decreases the release of small molecule gas during pyrolysis, leading to an improved ceramic yield 4.67 times higher than that without DCP addition. After 7 PIP cycles, density and open porosity of the final Cf/SiBCN composite with DCP addition are 1.73 g·cm−3 and ∼10%, respectively, which are 143.0% higher and 30.3% lower compared with the composites without DCP addition. As a result, the flexural strength and elastic modulus of Cf/SiBCN composites with DCP addition (371 MPa and 31 GPa) are 1.74 and 1.60 times higher than that without DCP addition (213 MPa and 19.4 GPa), respectively.


2020 ◽  
Author(s):  
Bowen Chen ◽  
Qi Ding ◽  
De-Wei Ni ◽  
Hongda Wang ◽  
Yusheng Ding ◽  
...  

Abstract In this work, 3D C f /SiBCN composites were fabricated by polymer infiltration and pyrolysis (PIP) with poly(methylvinyl)borosilazane as SiBCN precursor. The 3D microstructure evolution process of the composites was investigated by an advanced x-ray computed tomography (XCT). The effect of dicumyl peroxide (DCP) initiator addition on the crosslinking process, microstructure evolution and mechanical properties of the composites were uncovered. With the addition of DCP initiator, the liquid precursor can cross-link to solid-state at 120 °C. Moreover, DCP addition decreases the release of small molecule gas during pyrolysis, leading to an improved ceramic yield 4.67 times higher than that without DCP addition. After 7 PIP cycles, density and open porosity of the final Cf/SiBCN composite with DCP addition are 1.73 g·cm -3 and ~10%, respectively, which are 143.0% higher and 30.3% lower compared with the composites without DCP addition. As a result, the flexural strength and elastic modulus of Cf/SiBCN composites with DCP addition (371 MPa and 31 GPa) are 1.74 and 1.60 times higher than that without DCP addition (213 MPa and 19.4 GPa).


2020 ◽  
Author(s):  
Bowen Chen ◽  
Qi Ding ◽  
De-Wei Ni ◽  
Hongda Wang ◽  
Yusheng Ding ◽  
...  

Abstract In this work, 3D Cf/SiBCN composites were fabricated by polymer infiltration and pyrolysis (PIP) with poly(methylvinyl)borosilazane as SiBCN precursor. The 3D microstructure evolution process of the composites was investigated by an advanced x-ray computed tomography (XCT). The effect of dicumyl peroxide (DCP) initiator addition on the crosslinking process, microstructure evolution and mechanical properties of the composites were uncovered. With the addition of DCP initiator, the liquid precursor can cross-link to solid-state at 120 °C. Moreover, DCP addition decreases the release of small molecule gas during pyrolysis, leading to an improved ceramic yield 4.67 times higher than that without DCP addition. After 7 PIP cycles, density and open porosity of the final Cf/SiBCN composite with DCP addition are 1.73 g·cm-3 and ~10%, respectively, which are 143.0% higher and 30.3% lower compared with the composite without DCP addition. As a result, the flexural strength and elastic modulus of Cf/SiBCN composites with DCP addition (371 MPa and 31 GPa) are 1.74 and 1.60 times higher than that without DCP addition (213 MPa and 19.4 GPa).


2020 ◽  
Vol 46 (9) ◽  
pp. 13066-13072 ◽  
Author(s):  
Jiangshan Chen ◽  
Yuanjie Wang ◽  
Xueliang Pei ◽  
Chonggao Bao ◽  
Zhengren Huang ◽  
...  

Polymers ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 613 ◽  
Author(s):  
Kahraman ◽  
Wang ◽  
von Irmer ◽  
Gallei ◽  
Hey-Hawkins ◽  
...  

Grubbs-catalyzed ring-opening metathesis polymerization (ROMP) of carborane- and phosphonate-containing monomers has been used for the generation of hybrid block copolymers. Molecular weights with Mn of 50,000 g/mol were readily obtained with polydispersity index values, Đ, between 1.03–1.08. Reaction of the phospha ester and carborane substituted oxanorbornene block copolymer with trimethylsilyl bromide led to a new polymer with phosphonic acid functionalities. In application studies, the phospha-carborane functionalized block polymer was tested as heat resistance material. Thermal stability was investigated by thermal gravimetric analysis (TGA) and microscale combustion calorimetry (MCC) analysis. Thermal treatment and ceramic yield under air were directly correlated to the carborane content of the block copolymer. However, phosphorus content in the polymer was more crucial for the char residues when heated under nitrogen atmosphere. The peak heat release rate (PHRR) increased as the number of phosphonate functionalities increased. However, corresponding phosphonic acid derivatives featured a lower heat release rate and total heat release. Moreover, the phosphonic acid functionalities of the block copolymer offer efficient chelating capabilities for iron nanoparticles, which is of interest for applications in biomedicine in the future. The complexation with iron oxide nanoparticles was studied by transmission electron microscopy (TEM) and inductively coupled plasma mass spectrometry (ICP–MS).


Sign in / Sign up

Export Citation Format

Share Document