Effect of temperature and calcium ion concentration on permeability reduction due to composite barium and calcium sulfate precipitation in porous media

2015 ◽  
Vol 22 ◽  
pp. 299-312 ◽  
Author(s):  
Saeed Naseri ◽  
Jamshid Moghadasi ◽  
Mohammad Jamialahmadi
SIMULATION ◽  
1979 ◽  
Vol 32 (6) ◽  
pp. 193-204 ◽  
Author(s):  
George G. Járos ◽  
Thomas G. Coleman ◽  
Arthur C. Guyton

2008 ◽  
Vol 8 (3) ◽  
pp. 178-183 ◽  
Author(s):  
Sumio Watanabe ◽  
Masahiro Tomono ◽  
Makoto Takeuchi ◽  
Tsuneo Kitamura ◽  
Miyoko Hirose ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Masataka Nakano ◽  
Takuya Furuichi ◽  
Masahiro Sokabe ◽  
Hidetoshi Iida ◽  
Hitoshi Tatsumi

AbstractGravity is a critical environmental factor affecting the morphology and function of plants on Earth. Gravistimulation triggered by changes in the gravity vector induces an increase in the cytoplasmic free calcium ion concentration ([Ca2+]c) as an early process of gravity sensing; however, its role and molecular mechanism are still unclear. When seedlings of Arabidopsis thaliana expressing apoaequorin were rotated from the upright position to the upside-down position, a biphasic [Ca2+]c-increase composed of a fast-transient [Ca2+]c-increase followed by a slow [Ca2+]c-increase was observed. We find here a novel type [Ca2+]c-increase, designated a very slow [Ca2+]c-increase that is observed when the seedlings were rotated back to the upright position from the upside-down position. The very slow [Ca2+]c-increase was strongly attenuated in knockout seedlings defective in MCA1, a mechanosensitive Ca2+-permeable channel (MSCC), and was partially restored in MCA1-complemented seedlings. The mechanosensitive ion channel blocker, gadolinium, blocked the very slow [Ca2+]c-increase. This is the first report suggesting the possible involvement of MCA1 in an early event related to gravity sensing in Arabidopsis seedlings.


Sign in / Sign up

Export Citation Format

Share Document