Experimental study on new leak location methods for natural gas pipelines based on dynamic pressure waves

2018 ◽  
Vol 54 ◽  
pp. 83-91 ◽  
Author(s):  
Cuiwei Liu ◽  
Yazhen Wang ◽  
Yuxing Li ◽  
Minghai Xu
Author(s):  
Cuiwei Liu ◽  
Yuxing Li ◽  
Qihui Hu ◽  
Wuchang Wang ◽  
Yazhen Wang ◽  
...  

Natural gas is a vital energy carrier which can serve as an energy source, which is extremely vulnerable to leakages from pipeline transportation systems. The required ignition energy is low. Although the safety of natural gas pipelines has been improved, the average economic loss of natural gas accidents, including leaks, is large. To solve these problems, an acoustic leak localization system is designed and researched for gas pipelines using experiments with methods proposed according to different application situations. The traditional method with two sensors installed at both ends can be improved by a newly proposed combined signal-processing method, which is applied for the case that it is necessary to calculate the time differences with data synchronicity. When the time differences cannot be calculated accurately, a new method based on the amplitude attenuation model is proposed. Using these methods, the system can be applied to most situations. Next, an experimental facility at the laboratory scale is established, and experiments are carried out. Finally, the methods are verified and applied for leak localization. The results show that this research can provide a foundation for the proposed methods. The maximum experimental leak localization errors for the methods are −0.592%, and −7.62%. It is concluded that the system with the new methods can be applied to protect and monitor natural gas pipelines.


2020 ◽  
Vol 28 (03) ◽  
pp. 2050005
Author(s):  
Zewei Zhang ◽  
Hongyong Yuan ◽  
Ming Fu ◽  
Tao Chen ◽  
Yan Gao ◽  
...  

This paper is concerned with the spectral characteristics of leak noise at the source relevant to fluid dynamics for natural gas pipelines. Comparison is made between the flow field characteristics for the buried and above-ground pipelines to demonstrate the differences in aero-acoustics generation mechanism. The fundamental spectral parameters including the sound pressure level (SPL) and power spectral density (PSD), are extracted to characterize the leak noise under different pipeline conditions of operation pressure and leak orifice diameter. Numerical results show that the leak noise of buried pipelines has less energy and are more concentrated at lower frequencies, compared with that of above-ground pipelines. It is demonstrated that leak noise is predominantly governed by the dipole and the quadrupole sources, generated from the gas–solid interaction and turbulent disturbance, respectively. It is shown that the dipole source is attenuated and the quadrupole source is amplified with the leak orifice diameter for buried pipelines whereas both are amplified for above-ground pipelines. Moreover, it is suggested that the feature parameters of fluid dynamics, such as the average dynamic pressure and turbulent kinetic energy, can be used to characterize the leak noise mechanism for natural gas pipelines.


2014 ◽  
Vol 59 (11) ◽  
pp. 3756-3766 ◽  
Author(s):  
Emmanuel O. Obanijesu ◽  
Ahmed Barifcani ◽  
Vishnu K. Pareek ◽  
Moses O. Tade

Sign in / Sign up

Export Citation Format

Share Document