Drug and nutrient administration on the NICU – is delivery during breastfeeding an alternative to oral syringes?

2020 ◽  
Vol 26 (3) ◽  
pp. 152-156 ◽  
Author(s):  
Theresa Maier ◽  
Oliver Bonner ◽  
Paula Peirce ◽  
Nigel K.H. Slater ◽  
Kathryn Beardsall
1988 ◽  
Vol 251 (2) ◽  
pp. 577-580 ◽  
Author(s):  
V R Preedy ◽  
P J Garlick

1. Male rats (110-140 g body wt.) were restrained by a standard laboratory technique, by wrapping in a linen towel, and subjected to a constant intravenous infusion of saline (0.15 M-NaCl) for periods of 1 or 6 h. Fractional rates of protein synthesis (ks, %/day) were estimated at the start and at the end of the infusion period, by injection of a large concentration of [3H]phenylalanine. 2. In fed and overnight-fasted rats, restraint and infusion of saline for 1 and 6 h decreased ks in skeletal muscle by 15-20% and 30-35% respectively. Plasma glucose, insulin, glucagon and corticosterone concentrations in restrained and infused rats were not characteristic of immobilization stress. 3. Restrained rats responded to nutrient administration; ks in skeletal muscle increased by 35-40% after infusion of a mixture of amino acids and glucose for 1 or 6 h, as compared with saline-infused rats. 4. Restraint and infusion for 1 or 6 h did not overtly decrease ks and kRNA (protein synthesis per unit of RNA) in hypoxaemia-sensitive tissues, such as heart and liver. Restraint and infusion in an open cage, or in a cloth of open weave, did not decrease ks in muscle after 1 h. Blood gas measurements showed that rats restrained in a linen cloth were hypercapnic and acidotic compared with rats in an open cage. 5. It was concluded that respiratory acidosis, rather than hypoxia, resulting from restraint in a linen cloth decreases muscle protein synthesis.


1984 ◽  
Vol 247 (2) ◽  
pp. E243-E250
Author(s):  
G. Evoniuk ◽  
C. Kuhn ◽  
S. Schanberg

We have shown previously that short-term nutritional deprivation causes a tissue-specific loss of liver ornithine decarboxylase (ODC) induction after isoproterenol, phenylephrine, or glucagon administration in rat pups. To examine the role of nutrition in the regulation of hepatic ODC, we tested the ability of intragastric nutrient administration to reverse nutritionally related deficits in the ODC response to hormonal challenge. Intragastric whole milk was effective in restoring ODC induction and accumulation of its immediate product, putrescine, in response to isoproterenol administration. Glucose was shown to mediate this effect by the ability of intragastric skimmed milk, lactose, galactose, or D-glucose to return ODC induction, and the inability of casein, sucrose, fructose, L-glucose, or pyruvate plus lactate to do so. D-Glucose also reestablished ODC induction by phenylephrine and glucagon. Parenteral administration of D-glucose produced results comparable to those obtained after intragastric administration. Isoproterenol induction of ODC was prevented when hepatic glucose uptake was blocked by phlorizin but not by blockade of central nervous system glucose uptake with 2-deoxyglucose. We conclude that intrahepatic glucose is an absolute requirement for hepatic ODC induction by isoproterenol, phenylephrine, or glucagon in preweanling rats.


Author(s):  
Sarah Derde ◽  
Steven Thiessen ◽  
Chloë Goossens ◽  
Thomas Dufour ◽  
Greet Van den Berghe ◽  
...  

Critical Care ◽  
2011 ◽  
Vol 15 (S1) ◽  
Author(s):  
M Chapman ◽  
A Deane ◽  
A Di Bartolemeo ◽  
A Zaknic ◽  
M Summers ◽  
...  

1998 ◽  
Vol 275 (3) ◽  
pp. E423-E431 ◽  
Author(s):  
Satish C. Kalhan ◽  
Karen Q. Rossi ◽  
Lourdes L. Gruca ◽  
Dennis M. Super ◽  
Samuel M. Savin

Protein and nitrogen (N) accretion by the mother is a major adaptive response to pregnancy in humans and animals to meet the demands of the growing conceptus. Quantitative changes in whole body N metabolism were examined during normal pregnancy by measuring the rates of leucine N ( QN) and carbon ( QC) kinetics with the use of [1-13C,15N]leucine. Rate of synthesis of urea was measured by [15N2]urea tracer. Pregnancy-related change in total body water was quantified by H2[18O] dilution, and respiratory calorimetry was performed to quantify substrate oxidation. A significant decrease in the rate of urea synthesis was evident in the 1st trimester (nonpregnant 4.69 ± 1.14 vs. pregnant 3.44 ± 1.11 μmol ⋅ kg−1⋅ min−1; means ± SD, P < 0.05). The lower rate of urea synthesis was sustained through the 2nd and 3rd trimesters. QNwas also lower in the 1st trimester during fasting; however, it reached a significant level only in the 3rd trimester (nonpregnant 166 ± 35 vs. 3rd trimester 135 ± 16 μmol ⋅ kg−1⋅ h−1; P < 0.05). There was no significant change in QCduring pregnancy. A significant decrease in the rate of transamination of leucine was evident in the 3rd trimester both during fasting and in response to nutrient administration ( P< 0.05). The rate of deamination of leucine was correlated with the rate of urea synthesis during fasting ( r = 0.59, P = 0.001) and during feeding ( r = 0.407, P = 0.01). These data show that pregnancy-related adaptations in maternal N metabolism are evident early in gestation before any significant increase in fetal N accretion. It is speculated that the lower transamination of branched-chain amino acids may be due to decreased availability of N acceptors such as α-ketoglutarate as a consequence of resistance to insulin action evident in pregnancy.


Sign in / Sign up

Export Citation Format

Share Document