Annealing effect on photoluminescence properties of Er doped Al2O3–SiO2 sol–gel films

2006 ◽  
Vol 352 (26-27) ◽  
pp. 2841-2845 ◽  
Author(s):  
Jeong Oh Kwon ◽  
Sang Il Seok ◽  
Dongwoon Jung
2018 ◽  
Vol 32 (4) ◽  
pp. 1035-1042 ◽  
Author(s):  
K. Sunil Kumar ◽  
M. Ramanadha ◽  
A. Sudharani ◽  
S. Ramu ◽  
R. P. Vijayalakshmi

2020 ◽  
Vol 5 (3) ◽  
pp. 236-251
Author(s):  
Eshwara I. Naik ◽  
Halehatty S.B. Naik ◽  
Ranganaik Viswanath

Background: Various interesting consequences are reported on structural, optical, and photoluminescence properties of Zn1-xSmxO (x=0, 0.01, 0.03 and 0.05) nanoparticles synthesized by sol-gel auto-combustion route. Objective: This study aimed to examine the effects of Sm3+-doping on structural and photoluminescence properties of ZnO nanoparticles. Methods: Zn1-xSmxO (x=0, 0.01, 0.03 and 0.05) nanoparticles were synthesized by sol-gel auto combustion method. Results: XRD patterns confirmed the Sm3+ ion substitution through the undisturbed wurtzite structure of ZnO. The crystallite size was decreased from 24.33 to 18.46 nm with Sm3+ doping. The hexagonal and spherical morphology of nanoparticles was confirmed by TEM analysis. UV-visible studies showed that Sm3+ ion doping improved the visible light absorption capacity of Sm3+ iondoped ZnO nanoparticles. PL spectra of Sm3+ ion-doped ZnO nanoparticles showed an orange-red emission peak corresponding to 4G5/2→6HJ (J=7/2, 9/2 and 11/2) transition of Sm3+ ion. Sm3+ ion-induced PL was proposed with a substantial increase in PL intensity with a blue shift in peak upon Sm3+ content increase. Conclusion: Absorption peaks associated with doped ZnO nanoparticles were moved to a longer wavelength side compared to ZnO, with bandgap declines when Sm3+ ions concentration was increased. PL studies concluded that ZnO emission properties could be tuned in the red region along with the existence of blue peaks upon Sm3+ ion doping, which also results in enhancing the PL intensity. These latest properties related to Sm3+ ion-doped nanoparticles prepared by a cost-efficient process appear to be interesting in the field of optoelectronic applications, which makes them a prominent candidate in the form of red light-emitting diodes.


2003 ◽  
Vol 18 (2) ◽  
pp. 357-362 ◽  
Author(s):  
Mary M. Sandstrom ◽  
Paul Fuierer

Control over crystallographic orientation in thin films is important, particularly with highly anisotropic structures. Because of its ferroelectric nature, the layered perovskite La2Ti2O7 has interesting piezoelectric and electrooptic properties that may be exploited when films are highly textured. Sol-gel films with an orientation factor of greater than 95% were fabricated without relying on epitaxial (lattice-matching) growth from the substrate. Film orientation and crystallization were confirmed by x-ray diffraction, scanning electron microscopy, atomic force microscopy, and optical measurements. The particle sizes in all precursor solutions were measured by dynamic light scattering experiments. Experimental results indicate that film orientation is a function of precursor solution concentration, size of the molecular clusters in the solution, and film thickness.


2019 ◽  
Vol 17 (2) ◽  
pp. 333-343 ◽  
Author(s):  
Anaïs Even ◽  
Guillaume Vignaud ◽  
Nadia Guitter ◽  
Nathalie Le Bozec ◽  
Philippe Tingaut ◽  
...  

2006 ◽  
Vol 83 (4-9) ◽  
pp. 1456-1459 ◽  
Author(s):  
Valentinas Snitka ◽  
Arturas Ulcinas ◽  
Kestutis Nemciauskas ◽  
Vitas Lendraitis
Keyword(s):  
Sol Gel ◽  

Sign in / Sign up

Export Citation Format

Share Document