Bulk metallic glass formation in Cu–Zr–Ti ternary system

2007 ◽  
Vol 353 (32-40) ◽  
pp. 3425-3428 ◽  
Author(s):  
Qing Wang ◽  
Jianbing Qiang ◽  
Yingmin Wang ◽  
Junhai Xia ◽  
Chuang Dong
2005 ◽  
Vol 20 (9) ◽  
pp. 2252-2255 ◽  
Author(s):  
H. Ma ◽  
Q. Zheng ◽  
J. Xu ◽  
Y. Li ◽  
E. Ma

Mg−Cu−Y alloys with optimal glass forming ability have been found at off-eutectic compositions. The critical size for bulk metallic glass formation at the pinpointed compositions more than doubles that of the previously discovered eutectic Mg65Cu25Y10 alloy, leading to fully glassy rods with near-centimeter diameters in the ternary system upon copper mold casting. The result is a striking demonstration of the strong composition dependence of the glass forming ability, as well as of the need to scrutinize off-eutectic compositions. The implications of the discovery are discussed.


2012 ◽  
Vol 21 (1) ◽  
pp. 67-74 ◽  
Author(s):  
D.M. Lee ◽  
J.H. Sun ◽  
D.H. Kang ◽  
S.Y. Shin ◽  
G. Welsch ◽  
...  

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 450
Author(s):  
Johan Lindwall ◽  
Andreas Lundbäck ◽  
Jithin James Marattukalam ◽  
Anders Ericsson

The development of process parameters and scanning strategies for bulk metallic glass formation during additive manufacturing is time-consuming and costly. It typically involves trials with varying settings and destructive testing to evaluate the final phase structure of the experimental samples. In this study, we present an alternative method by modelling to predict the influence of the process parameters on the crystalline phase evolution during laser-based powder bed fusion (PBF-LB). The methodology is demonstrated by performing simulations, varying the following parameters: laser power, hatch spacing and hatch length. The results are compared in terms of crystalline volume fraction, crystal number density and mean crystal radius after scanning five consecutive layers. The result from the simulation shows an identical trend for the predicted crystalline phase fraction compared to the experimental estimates. It is shown that a low laser power, large hatch spacing and long hatch lengths are beneficial for glass formation during PBF-LB. The absolute values show an offset though, over-predicted by the numerical model. The method can indicate favourable parameter settings and be a complementary tool in the development of scanning strategies and processing parameters for additive manufacturing of bulk metallic glass.


2007 ◽  
pp. 1275-1278
Author(s):  
Qing Wang ◽  
Chun Lei Zhu ◽  
Yan Hui Li ◽  
Jiang Wu ◽  
Chuang Dong ◽  
...  

2009 ◽  
Vol 144 ◽  
pp. 012048 ◽  
Author(s):  
C L Zhu ◽  
Q Wang ◽  
F W Li ◽  
Y H Li ◽  
Y M Wang ◽  
...  

2006 ◽  
Vol 23 (3) ◽  
pp. 672-674 ◽  
Author(s):  
Jo Chol-Lyong ◽  
Xia Lei ◽  
Ding Ding ◽  
Dong Yuan-Da

Sign in / Sign up

Export Citation Format

Share Document