eutectic point
Recently Published Documents


TOTAL DOCUMENTS

168
(FIVE YEARS 36)

H-INDEX

14
(FIVE YEARS 2)

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7418
Author(s):  
Hamza Ayaz ◽  
Veerakumar Chinnasamy ◽  
Honghyun Cho

This study reports the in-depth investigation of the thermophysical properties and thermal reliability of caprylic acid-stearyl alcohol (CA-SA) eutectic phase change material (PCM) for cooling applications. The phase diagram of CA-SA showed a eutectic point at a 90:10 molar ratio. The onset melting/freezing temperature and latent heat of fusion of caprylic acid-stearyl alcohol from the differential scanning calorimetry (DSC) were 11.4 °C/11.8 °C and 154.4/150.5 J/g, respectively. The thermal conductivity for the prepared eutectic PCM in the solid phase was 0.267 W/m.K (0 °C), whereas, in the liquid phase, it was 0.165 W/m.K (20 °C). In addition, the maximum relative percentage difference (RPD) marked at the end of 200 thermal cycles was 5.2% for onset melting temperature and 18.9% for phase change enthalpy. The Fourier transform infrared spectroscopy (FT-IR) result shows that the eutectic PCM holds good chemical stability. Corrosion tests showed that caprylic acid-stearyl alcohol could be a potential candidate for cold thermal energy storage applications.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7321
Author(s):  
Agata Stempkowska

The aim of the research was to check whether the system of three fluxes based on lithium aluminium silicate and alkali feldspars has a eutectic point, i.e., with the lowest melting temperature. Lithium was introduced into the mixtures in the form of petalite, which occurs naturally in nature (Bikita Zimbabwe deposit). Using naturally occurring raw materials such as petalite, sodium feldspar, and potassium feldspar, an attempt was made to obtain eutectics with the lowest melting point to facilitate thermal processing of the mineral materials. In addition, the high-temperature viscosity of the mineral alloys and physical parameters such as density, linear shrinkage, and open porosity were studied. The study showed that in these systems, there is one three-component eutectic at 1345 °C, with the lowest viscosity of 1·105 Pas and the highest density of 2.34g/cm3, with a weight content of petalite 20%, sodium feldspar 20%, and potassium feldspar 20%.


2021 ◽  
Vol 2079 (1) ◽  
pp. 012013
Author(s):  
Hao Wang ◽  
Erhu Yan ◽  
Wei Liu ◽  
Chongbo Di ◽  
Jian Cheng ◽  
...  

Abstract Titanium alloys have a wide range of applications, and the internal placement of hydrogen into them can modulate the microstructure of the alloys and thus have great potential for further development. However, few studies have been reported on the application of this technique to Nb-Ti-Co ternary alloys, which needs to be urgently investigated. In this paper, four types of alloys (Nb10Ti61Co29, Nb15Ti55Co30, Nb20Ti50Co30, and Nb25Ti50Co25) are selected near the eutectic point of the phase diagram to study their placement of hydrogen by both static and dynamic processes of hydrogen’s placements, focusing on the effects of the temperature, time, and hydrogen-flow rate of such processes on the amount of hydrogen placements. The relationship between the hydrogen replacement parameters and the mechanical properties of the alloys is constructed. The results show that the placed-hydrogen amount of Nb-Ti-Co as-cast alloy grows with the increase of hydrogen-flow rate and soaking (or holding) time, with an upper limit of the placed-hydrogen amount, and the pattern of the directionally- solidified alloys is similar to that of the as-cast alloys; however, at a certain soaking time and hydrogen- flow rate, although the placed hydrogen amount of both alloys rises with the increase of temperature, the placed-hydrogen amount of Nb-Ti-Co directionally-solidified alloys is always larger than that of the as-cast alloys. However, the amount of hydrogen placement in the Nb-Ti-Co directionally-solidified alloys is always larger than that in the as-cast alloys, and the amount of hydrogen placement decreases significantly as the growth rate of the alloys increases. In addition, the microhardness decreases with increasing growth rate in the directionally-solidified specimens, and the amount of hydrogen placement and microhardness increase with growing Nb content.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5813
Author(s):  
Jun Chang ◽  
Jixin Zhang ◽  
Yanchen Yuan ◽  
Kai Cui

In this paper, the effect of iron phase content on the calcination and properties of clinker and barium calcium sulfoaluminate cement was studied. The compressive strength of the samples was tested and combined with an XRD and SEM-EDS analysis, and the microstructure and composition of the barium calcium sulfoaluminate clinker and hydrated samples were characterized. The results showed that the oval-shaped particles were C2S minerals, and the hexagonal plate-shaped or rhombohedral dodecahedral particles were C2.75B1.25A3S¯. The Ba element was mainly distributed in the barium calcium sulfoaluminate region, and some of it was dissolved in C2S; the Fe element was distributed between C2.75B1.25A3S¯ and C2S crystal grains in the form of an iron phase solid solution, which acted as a solvent. When the iron phase composition was C4AF and the iron phase content was 5%, the early hydration and later strength were better, and the compressive strength after curing for 1, 3 and 28 days was 73.2 MPa, 97.9 MPa and 106.9 MPa, respectively. A proper amount of the iron phase can reduce the eutectic point of the sintered mature material system, increase the amount of liquid phase, reduce the viscosity of the liquid phase, effectively accelerate the migration of mineral ions and promote the formation and growth of minerals.


Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2679
Author(s):  
María Núñez ◽  
Sebastián Muñoz-Guerra ◽  
Antxon Martínez de Ilarduya

This work explores for the first time the enzymatic synthesis of poly(butylene-co-ε-caprolactone) (PBSCL) copolyesters in bulk using commercially available monomers (dimethyl succinate (DMS), 1,4-butanediol (BD), and ε-caprolactone (CL)). A preliminary kinetic study was carried out which demonstrated the higher reactivity of DMS over CL in the condensation/ring opening polymerization reaction, catalyzed by Candida antarctica lipase B. PBSCL copolyesters were obtained with high molecular weights and a random microstructure, as determined by 13C NMR. They were thermally stable up to 300 °C, with thermal stability increasing with the content of CL in the copolyester. All of them were semicrystalline, with melting temperatures and enthalpies decreasing up to the eutectic point observed at intermediate compositions, and glass transition temperatures decreasing with the content of CL in the copolyester. The use of CALB provided copolyesters free from toxic metallic catalyst, which is very useful if the polymer is intended to be used for biomedical applications.


Author(s):  
Hwa-Teng Lee ◽  
Ching-Yuan Ho ◽  
Chao Chin Lee

Abstract Effects of Ag content (0 ~ 3 wt.%) in Sn-xAgCu0.7 solders on microstructure characteristics and low cycling fatigue at different temperature conditions are overall investigated. To increase Ag content, the solidus point 228.8 ? of Sn-Cu0.7 gradually decreases to 218.5 ? and temperature range of solid-liquid coexistence phase is also decrease. The Sn-Cu0.7 matrix consisted of small particles of Cu6Sn5 within ß-Sn equiaxial grains and did not significantly influence solder hardness. Moreover, much intermetallic compound of plate-like Ag3Sn and rod-like Cu6Sn5 existed in Sn-xAgCu0.7 solders enables to enhance the hardness due to dense network of Ag3Sn precipitation and near eutectic point. As a result of plastic displacement decreases with higher Ag additions, better fatigue lifetime could be achieved at Ag content to 1.5 wt.%. Besides, crack stemmed from thicker IMC layer in Sn-3.0Ag-Cu0.7 solder interface will decrease fatigue performance especially for 80 ? and 120 ?.


2021 ◽  
Author(s):  
Zheyi Zhang ◽  
Yizhaotong Ai ◽  
Xinghua Zhong ◽  
Yin Zhuang ◽  
Jing Sheng ◽  
...  

Abstract This study mainly investigated the formation mechanism of Al2O3-YAG(Al5Y3O12) amorphous coating prepared by atmospheric plasma spraying. Nano and micro-sized powders with low eutectic point ratio were selected as raw materials for comparison. XRD, SEM and EBSD were used to analyze the phase composition, morphologies, phase distribution and structure of the coating. The crystal structures of the possible existed phases were studied to analyze the crystallization chemistry of powder droplets. It is concluded that the composition ratio of powders and particle size should be also considered as the key factors for the preparation of amorphous coatings besides the high enthalpy and ultra-fast cooling rate of thermal spray technology. The as-sprayable powder chose multiple components with low eutectic point ratio distributed uniformly at nano-scale or sub-micro scale, and can reacted to form the new phase crystal with high coordination numbers of cations.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2263
Author(s):  
Maryam Safari ◽  
Itziar Otaegi ◽  
Nora Aramburu ◽  
Gonzalo Guerrica-Echevarria ◽  
Antxon Martínez de Ilarduya ◽  
...  

Isodimorphic behavior is determined by partial inclusion of comonomer segments within the crystalline structure and arises from the comparatively similar repeating chain units of the parental homopolymers. Isodimorphic random copolymers are able to crystallize irrespective of their composition and exhibit a pseudo-eutectic behavior when their melting point values are plotted as a function of comonomer content. At the pseudo-eutectic point or region, two crystalline phases can coexist. On the right-hand and the left-hand side of the pseudo-eutectic point or region, only one single crystalline phase can form which is very similar to the crystalline structures of the parent homopolymers. This article aims to study the synthesis method, structure, crystallization behavior and mechanical properties of isodimorphic random PBS-ran-PCL copolyesters. Moreover, this study provides a comprehensive analysis of our main recent results on PBS-ran-PCL random copolyesters with three different molecular weights. The results show that the comonomer composition and crystallization conditions are the major factors responsible for the crystalline morphology, crystallization kinetics and mechanical performance of isodimorphic random copolyesters. Our studies demonstrate that in the pseudo-eutectic region, where both crystalline phases can coexist, the crystallization conditions determine the crystalline phase or phases of the copolymer. The relationships between the comonomer composition and mechanical properties are also addressed in this work.


Author(s):  
Erika Figueiredo Hehnes ◽  
Paula Carolina de Souza ◽  
Júlio César Dutra

The present article shows a new strategy used to cover phase diagrams for undergraduate mechanical engineering students. It is based on active learning in which students are required to investigate experimentally three different eutectic alloys by using X-ray diffraction and metallography. The first technique allows students to use Rietveld analysis to obtain the mass fraction of the present phases and they must compare their results with those obtained theoretically whilst the second one is used to characterize those phases and measured their area fractions. From these results, they can also compare them with those obtained theoretically, but considering the density of different phases. The results have shown that students understood more clearly concepts such as the lever rule, and the very interpretation of phase diagram: the liquidus and solidus curve and finally the eutectic point.  


Sign in / Sign up

Export Citation Format

Share Document