The role of surfactant in synthesis of magnetic nanocrystalline powder of NiFe2O4 by sol–gel auto-combustion method

2008 ◽  
Vol 354 (47-51) ◽  
pp. 5184-5185 ◽  
Author(s):  
M.R. Barati ◽  
S.A. Seyyed Ebrahimi ◽  
A. Badiei
2012 ◽  
Vol 05 ◽  
pp. 765-770
Author(s):  
S. SADEGHI-NIARAKI ◽  
S. A. SEYYED EBRAHIM ◽  
SH. RAYGAN

In this research SrFe 12 O 19 nanocrystalline synthesized by sol-gel auto-combustion method and subsequent annealing at 1000°C for 1h subjected to mechanochemical treatment in a high-energy ball mill and then re-annealing. A planetary ball mill (Fritsch Pulveristte 6) was used to mill the strontium hexaferrite powder at 300 rpm in air for 10, 20 and 40 hours. The process was studied by X-ray diffraction technique and scanning electron microscopy. The X-ray study showed that SrFe 12 O 19 phase was decomposed by milling. Strontium hexaferrite and α- Fe 2 O 3 were obtained with 10 hours milling. There were α- Fe 2 O 3 and strontium hexaferrite in XRD patterns of 20 hours milled sample. With increasing of the milling time to 40 hours, strontium hexaferrite was decomposed completely. The annealing of the 20 and 40 h milled powders at 900°C for 1h led to the formation of single phase strontium hexaferrite with smaller crystallite size compare to that of the hexaferrite powder before milling and subsequent annealing.


2011 ◽  
Vol 25 (11) ◽  
pp. 855-861 ◽  
Author(s):  
M. SHAHMIRZAEI ◽  
S. A. SEYYED EBRAHIMI ◽  
R. DEHGHAN

In this work, a novel method of mechano sol–gel auto-combustion has been developed for production of single phase nickel ferrite nanocrystalline powder, consisting of a sol–gel auto-combustion synthesis followed by a high energy milling process before calcination. Sol–gel auto-combustion was carried out using a gel including citric acid as a reductant and metal nitrates as oxidants. This gel exhibited a self-propagating behavior after ignition in air. The effects of the intermediate high energy milling on the physical properties of the final product after calcination were investigated. The results showed that with a high energy milling of the sol–gel auto-combusted powders with a ball-to-powder mass ratio of 20 for 20 h, the temperature of calcination for synthesis of the single phase ferrite reduced from 1000°C to 700°C and the size of the ferrite crystallites decreased from 72 nm to 15 nm.


2014 ◽  
Vol 22 (2) ◽  
pp. 145-154 ◽  
Author(s):  
Ioana A. Gorodea

Abstract Double perovskite-type oxide Ca2BMoO6 materials, where B = Cr, La and Sm, were prepared by the sol-gel auto-combustion method for the first time. The role of different B-site cations on their synthesis, structures, and magnetic properties was investigated. The synthesis progress was followed by the Fourier transform infrared spectroscopy and the samples’ structure was investigated by X-ray diffraction. The increase of the ionic radii B leads to the decrease of the t-value which reflects the structural distortion from the ideal cubic perovskite. Magnetization measurements were made with a SQUID magnetometer. All compounds are ferimagnetic and magnetic properties are indirectly influenced by the distortion degree of the lattice and disorder on the B/B’ positions


2008 ◽  
Vol 368-372 ◽  
pp. 598-600 ◽  
Author(s):  
M.R. Barati ◽  
S.A. Seyyed Ebrahimi ◽  
A. Badiei

In this work, nickel-zinc ferrite nanocrystalline powder has been prepared by a sol-gel autocombustion technique using nitrate-citrate gel obtained from metal nitrates and citric acid solution. Characterization of the nitrate-citrate gel, as-burnt powder and calcined powder at different calcination conditions were investigated by using XRD, FTIR and SEM techniques. The results revealed that the nitrate-citrate gel exhibits a self-propagating behavior after ignition and showed that the different calcination conditions affect the crystallite size of the synthesized powder as well as its phase constitution.


2020 ◽  
Vol 5 (3) ◽  
pp. 236-251
Author(s):  
Eshwara I. Naik ◽  
Halehatty S.B. Naik ◽  
Ranganaik Viswanath

Background: Various interesting consequences are reported on structural, optical, and photoluminescence properties of Zn1-xSmxO (x=0, 0.01, 0.03 and 0.05) nanoparticles synthesized by sol-gel auto-combustion route. Objective: This study aimed to examine the effects of Sm3+-doping on structural and photoluminescence properties of ZnO nanoparticles. Methods: Zn1-xSmxO (x=0, 0.01, 0.03 and 0.05) nanoparticles were synthesized by sol-gel auto combustion method. Results: XRD patterns confirmed the Sm3+ ion substitution through the undisturbed wurtzite structure of ZnO. The crystallite size was decreased from 24.33 to 18.46 nm with Sm3+ doping. The hexagonal and spherical morphology of nanoparticles was confirmed by TEM analysis. UV-visible studies showed that Sm3+ ion doping improved the visible light absorption capacity of Sm3+ iondoped ZnO nanoparticles. PL spectra of Sm3+ ion-doped ZnO nanoparticles showed an orange-red emission peak corresponding to 4G5/2→6HJ (J=7/2, 9/2 and 11/2) transition of Sm3+ ion. Sm3+ ion-induced PL was proposed with a substantial increase in PL intensity with a blue shift in peak upon Sm3+ content increase. Conclusion: Absorption peaks associated with doped ZnO nanoparticles were moved to a longer wavelength side compared to ZnO, with bandgap declines when Sm3+ ions concentration was increased. PL studies concluded that ZnO emission properties could be tuned in the red region along with the existence of blue peaks upon Sm3+ ion doping, which also results in enhancing the PL intensity. These latest properties related to Sm3+ ion-doped nanoparticles prepared by a cost-efficient process appear to be interesting in the field of optoelectronic applications, which makes them a prominent candidate in the form of red light-emitting diodes.


2015 ◽  
Vol 241 ◽  
pp. 226-236 ◽  
Author(s):  
Neha Solanki ◽  
Rajshree B. Jotania

Influence of Ca substitution on structural, magnetic and dielectric properties of Ba3Co2-xCaxFe24O41(where x = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0), prepared by Sol-Gel auto-combustion method, has been investigated in present studies. The obtained powder was sintered at 950 oC for 4 hrs. in the static air atmosphere. Structural analysis of Ca-doped Ba3Co2-xCaxFe24O41powders revealed pure Z-type hexaferrite phase at low temperature. The frequency dependent dielectric constant (Єʹ) and magnetic properties such as remanent magnetization (Mr), saturation magnetization (Ms) and coercivity (Hc) were studied. It is observed that coercivity increased gradually with increase in calcium content. The real dielectric constant (Єʹ) and dielectric loss tangent (tan δ) were studied in the frequency range of 20Hz to 2MHz. The dielectric parameters for all samples show normal dielectric behavior as observed in hexaferrites. Contents of Paper


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 558
Author(s):  
Thanida Charoensuk ◽  
Wannisa Thongsamrit ◽  
Chesta Ruttanapun ◽  
Pongsakorn Jantaratana ◽  
Chitnarong Sirisathitkul

Solution–processing methods were investigated as viable alternatives to produce the polymer-bonded barium hexaferrite (BaM). BaM powders were first synthesized by using the sol-gel auto-combustion method. While the ignition period in two synthesis batches varied, the morphology of hexagonal microplates and nanorods, as well as magnetic properties, were reproduced. To prepare magnetic polymer composites, these BaM powders were then incorporated into the acrylonitrile-butadiene-styrene (ABS) matrix with a weight ratio of 80:20, 70:30, and 60:40 by using the solution casting method. Magnetizations were linearly decreased with a reduction in ferrite loading. Compared to the BaM loose powders and pressed pellet, both remanent and saturation magnetizations were lower and gave rise to comparable values of the squareness. The squareness around 0.5 of BaM samples and their composites revealed the isotropic alignment. Interestingly, the coercivity was significantly increased from 1727–1776 Oe in loose BaM powders to 1874–2052 Oe for the BaM-ABS composites. These composites have potential to be implemented in the additive manufacturing of rare-earth-free magnets.


Sign in / Sign up

Export Citation Format

Share Document