Compressive stress profiles of chemically strengthened glass after exposure to high voltage electric fields

2014 ◽  
Vol 394-395 ◽  
pp. 6-8 ◽  
Author(s):  
Lynn M. Thirion ◽  
Elena Streltsova ◽  
Wen-Ya Lee ◽  
Zhenan Bao ◽  
Mingqian He ◽  
...  
2021 ◽  
Vol 11 (4) ◽  
pp. 179-203
Author(s):  
Asaad Shemshadi ◽  
Pourya Khorampour

Facilities and buildings installed nearby high voltage equipment and electric field exposure is always a serious threat to the health of organisms and can have a significant impact on the functioning of sensitive and vital organs such as the heart and brain. Therefore, it is necessary to study the electromagnetic field value in these areas to control the intensity and restrict the induced value regarding to international recommendations. In this paper, the effects of 230KV transmission line electric fields on the environment are examined by proper FEM software.The model under consideration in this project is a four story building adjacent to the 230KV transmission line.At first, the distance between the building and high voltage transmission lines and its relationship to the intensity of the electric field is examined, and then the intensity of the electric field is compared to the standards of the International Commission on Non Ionizing Radiation Protection (ICNIRP). To continue, in places where the electric field exceeds the standard level value, solutions to reduce the intensity of the electric field to the tolerable value have been proposed.The first solution is to use a metal shield around the building as a Faraday cage, which weakens the potential for electric field value by creating an enclosed surface, the reduction rate is 4700%,both complete cage shape and incomplete cage shapes are considered in this study which reduces the exposure value to 62.5% of its initial value. The second approach to reducing the electric field is to use protective conductor paints against electromagnetic fields. In the following study, the effect of using trees as a barrier against electromagnetic radiation will be examined. Finally, the three proposed solutions are compared in terms of environmental constraints, economic justification, and the reduction in electric field value.


2010 ◽  
Vol 6 (1) ◽  
pp. 31 ◽  
Author(s):  
Cristina Peratta ◽  
Andres Peratta ◽  
Dragan Poljak

The paper introduces a three dimensional multidomainboundary element model of a pregnant woman and foetus for the analysis of exposure to high voltage extremely low frequency electric fields. The definition of the differentphysical and geometrical properties of the relevant tissues is established according to medical information available in existing literature. The model takes into account changes in geometry, body mass, body fat, and overall chemical composition in the body which influence the electrical properties, throughout the different gestational periods. The developed model is used to solve the case of exposure to overhead power transmission lines at different stages of pregnancy including weeks 8, 13, 26 and 38. The results obtained are in line with those published in the earlier works considering different approaches. In addition, a sensitivity analysis involving varying scenarios of conductivity, foetus postures and geometry for each stage is defined and solved. Finally, a correlation between the externally applied electric field and the current density inside the foetus is established and the zones of maximum exposure are identified.


2000 ◽  
Vol 63 (6) ◽  
pp. 741-746 ◽  
Author(s):  
MAURICIO R. TEREBIZNIK ◽  
ROSA J. JAGUS ◽  
PATRICIA CERRUTTI ◽  
MARTA S. DE HUERGO ◽  
ANA M. R. PILOSOF

The Doehlert design was applied in order to investigate the combined effect of nisin and high voltage pulsed electric fields (PEF) on the inactivation of Escherichia coli in simulated milk ultrafiltrate media. Nisin alone was totally inactivated by PEF, but in the presence of bacterial cells a protective effect was observed. However, the effectiveness of nisin was still decreased when bacterial cells were subjected to the combined treatment. In spite of this phenomenon, an almost additive response emerged as a consequence of the combined treatment. A 4-log cycle reduction may be accomplished with around 1,000 IU/ml (7.15 μM) of nisin and three pulses of 11.25 kV/cm or 500 IU/ml for five pulses of the same intensity. The observed efficacy arising from the combination of both treatments suggests the possibility of using PEF for improving the action spectrum of natural antimicrobials.


2019 ◽  
Vol 99 ◽  
pp. 59-65 ◽  
Author(s):  
Nancy Ma ◽  
Eric J. Miller ◽  
Vincent F. Jones ◽  
Kris J. Kozaczek
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document