scholarly journals BEM Modelling of High Voltage ELF electric field applied to a 3D pregnant woman model

2010 ◽  
Vol 6 (1) ◽  
pp. 31 ◽  
Author(s):  
Cristina Peratta ◽  
Andres Peratta ◽  
Dragan Poljak

The paper introduces a three dimensional multidomainboundary element model of a pregnant woman and foetus for the analysis of exposure to high voltage extremely low frequency electric fields. The definition of the differentphysical and geometrical properties of the relevant tissues is established according to medical information available in existing literature. The model takes into account changes in geometry, body mass, body fat, and overall chemical composition in the body which influence the electrical properties, throughout the different gestational periods. The developed model is used to solve the case of exposure to overhead power transmission lines at different stages of pregnancy including weeks 8, 13, 26 and 38. The results obtained are in line with those published in the earlier works considering different approaches. In addition, a sensitivity analysis involving varying scenarios of conductivity, foetus postures and geometry for each stage is defined and solved. Finally, a correlation between the externally applied electric field and the current density inside the foetus is established and the zones of maximum exposure are identified.

Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8327
Author(s):  
Gunbok Lee ◽  
Jeong-Yeon Kim ◽  
Gildong Kim ◽  
Jae Hee Kim

When a drone is used for inspection of facilities, there are often cases in which high-voltage power lines interfere, resulting in the drone being caught or falling. To prevent this type of incident, drones must be capable of detecting high-voltage power lines. Typically, a strong electric field is formed around the high-voltage lines. To detect the electric fields around high-voltage lines, this study proposes an electric field sensor that may be integrated within the body of a drone. In a laboratory environment, a voltage of 25 kV was applied to an overhead line, and the induced voltage in the proposed sensor was measured at various electric field intensities. Over an electric field range of 0.5 to 10.1 kV/m, a voltage of 0 to 0.77 V was measured with each proposed sensor. In addition, the electric field and the voltage induced in the sensor were measured in a real-world railway environment with overhead lines. Under these conditions, the proposed sensor has the compensated value of 4.5 when the measured electric field was 4.05 kV/m. Therefore, the proposed sensor may be applied in drones to measure large electric fields and to detect the presence of high-voltage lines in its vicinity.


Jurnal Teknik ◽  
2018 ◽  
Vol 7 (1) ◽  
Author(s):  
Mauludi Manfaluthy

WHO (World Health Organization) concludes that not much effect is caused by electric field up to 20 kV / m in humans. WHO standard also mentions that humans will not be affected by the magnetic field under  100 micro tesla and that the electric field will affect the human body with a maximum standard of 5,000 volts per meter. In this study did not discuss about the effect of high voltage radiation SUTT (High Voltage Air Channel) with human health. The research will focus on energy utilization of SUTT radiation. The combination of electric field and magnetic field on SUTT (70-150KV) can generate electromagnetic (EM) and radiation waves, which are expected to be converted to turn on street lights around the location of high voltage areas or into other forms. The design of this prototype works like an antenna in general that captures electromagnetic signals and converts them into AC waves. With a capacitor that can store the potential energy of AC and Schottky diode waves created specifically for low frequency waves, make the current into one direction (DC). From the research results obtained the current generated from the radiation is very small even though the voltage is big enough.Keywords : Radiance Energy, Joule Thief, and  LED Module.


2021 ◽  
Vol 11 (2) ◽  
pp. 492
Author(s):  
Levente Rácz ◽  
Bálint Németh

Exceeding the electric field’s limit value is not allowed in the vicinity of high-voltage power lines because of both legal and safety aspects. The design parameters of the line must be chosen so that such cases do not occur. However, analysis of several operating power lines in Europe found that the electric field strength in many cases exceeds the legally prescribed limit for the general public. To illustrate this issue and its importance, field measurement and finite element simulation results of the low-frequency electric field are presented for an active 400 kV power line. The purpose of this paper is to offer a new, economical expert system based on dynamic line rating (DLR) that utilizes the potential of real-time power line monitoring methods. The article describes the expert system’s strengths and benefits from both technical and financial points of view, highlighting DLR’s potential for application. With our proposed expert system, it is possible to increase a power line’s safety and security by ensuring that the electric field does not exceed its limit value. In this way, the authors demonstrate that DLR has other potential applications in addition to its capacity-increasing effect in the high voltage grid.


2001 ◽  
Vol 114 (8) ◽  
pp. 1515-1520 ◽  
Author(s):  
A.J. Rosenspire ◽  
A.L. Kindzelskii ◽  
H.R. Petty

Previously, we have demonstrated that NAD(P)H levels in neutrophils and macrophages are oscillatory. We have also found that weak ultra low frequency AC or pulsed DC electric fields can resonate with, and increase the amplitude of, NAD(P)H oscillations in these cells. For these cells, increased NAD(P)H amplitudes directly signal changes in behavior in the absence of cytokines or chemotactic factors. Here, we have studied the effect of pulsed DC electric fields on HT-1080 fibrosarcoma cells. As in neutrophils and macrophages, NAD(P)H levels oscillate. We find that weak (~10(-)(5) V/m), but properly phased DC (pulsed) electric fields, resonate with NAD(P)H oscillations in polarized and migratory, but not spherical, HT-1080 cells. In this instance, electric field resonance signals an increase in HT-1080 pericellular proteolytic activity. Electric field resonance also triggers an immediate increase in the production of reactive oxygen metabolites. Under resonance conditions, we find evidence of DNA damage in HT-1080 cells in as little as 5 minutes. Thus the ability of external electric fields to effect cell function and physiology by acting on NAD(P)H oscillations is not restricted to cells of the hematopoietic lineage, but may be a universal property of many, if not all polarized and migratory eukaryotic cells.


2013 ◽  
Vol 845 ◽  
pp. 372-377 ◽  
Author(s):  
Nabipour Afrouzi Hadi ◽  
Zulkurnain Abdul-Malek ◽  
Saeed Vahabi Mashak ◽  
A.R. Naderipour

Cross-linked polyethylene is widely used as electrical insulation because of its excellent electrical properties such as low dielectric constant, low dielectric loss and also due to its excellent chemical resistance and mechanical flexibility. Nevertheless, the most important reason for failure of high voltage equipment is due to its insulation failure. The electrical properties of an insulator are affected by the presence of cavities within the insulating material, in particular with regard to the electric field and potential distributions. In this paper, the electric field and potential distributions in high voltage cables containing single and multiple cavities are studied. Three different insulating media, namely PE, XLPE, and PVC was modeled. COMSOL software which utilises the finite element method (FEM) was used to carry out the simulation. An 11kV underground cable was modeled in 3D for better observation and analyses of the generated voltage and field distributions. The results show that the electric field is affected by the presence of cavities in the insulation. Furthermore, the field strength and uniformity are also affected by whether cavities are radially or axially aligned, as well as the type of the insulating solid. The effect of insulator type due the presence of cavities was seen most prevalent in PVC followed by PE and then XLPE.


2021 ◽  
Vol 11 (4) ◽  
pp. 179-203
Author(s):  
Asaad Shemshadi ◽  
Pourya Khorampour

Facilities and buildings installed nearby high voltage equipment and electric field exposure is always a serious threat to the health of organisms and can have a significant impact on the functioning of sensitive and vital organs such as the heart and brain. Therefore, it is necessary to study the electromagnetic field value in these areas to control the intensity and restrict the induced value regarding to international recommendations. In this paper, the effects of 230KV transmission line electric fields on the environment are examined by proper FEM software.The model under consideration in this project is a four story building adjacent to the 230KV transmission line.At first, the distance between the building and high voltage transmission lines and its relationship to the intensity of the electric field is examined, and then the intensity of the electric field is compared to the standards of the International Commission on Non Ionizing Radiation Protection (ICNIRP). To continue, in places where the electric field exceeds the standard level value, solutions to reduce the intensity of the electric field to the tolerable value have been proposed.The first solution is to use a metal shield around the building as a Faraday cage, which weakens the potential for electric field value by creating an enclosed surface, the reduction rate is 4700%,both complete cage shape and incomplete cage shapes are considered in this study which reduces the exposure value to 62.5% of its initial value. The second approach to reducing the electric field is to use protective conductor paints against electromagnetic fields. In the following study, the effect of using trees as a barrier against electromagnetic radiation will be examined. Finally, the three proposed solutions are compared in terms of environmental constraints, economic justification, and the reduction in electric field value.


Geophysics ◽  
2001 ◽  
Vol 66 (1) ◽  
pp. 137-147 ◽  
Author(s):  
Erika Gasperikova ◽  
H. Frank Morrison

The observed electromagnetic response of a finite body is caused by induction and polarization currents in the body and by the distortion of the induction currents in the surrounding medium. At a sufficiently low frequency, there is negligible induction and the measured response is that of the body distorting the background currents just as it would distort a direct current (dc). Because this dc response is not inherently frequency dependent, any observed change in response of the body for frequencies low enough to be in this dc limit must result from frequency‐dependent conductivity. Profiles of low‐frequency natural electric (telluric) fields have spatial anomalies over finite bodies of fixed conductivity that are independent of frequency and have no associated phase anomaly. If the body is polarizable, the electric field profile over the body becomes frequency dependent and phase shifted with respect to a reference field. The technique was tested on data acquired in a standard continuous profiling magnetotelluric (MT) survey over a strong induced polarization (IP) anomaly previously mapped with a conventional pole‐dipole IP survey. The extracted IP response appears in both the apparent resistivity and the normalized electric field profiles.


2007 ◽  
Vol 135 (7) ◽  
pp. 2525-2544 ◽  
Author(s):  
Eric C. Bruning ◽  
W. David Rust ◽  
Terry J. Schuur ◽  
Donald R. MacGorman ◽  
Paul R. Krehbiel ◽  
...  

Abstract On 28–29 June 2004 a multicellular thunderstorm west of Oklahoma City, Oklahoma, was probed as part of the Thunderstorm Electrification and Lightning Experiment field program. This study makes use of radar observations from the Norman, Oklahoma, polarimetric Weather Surveillance Radar-1988 Doppler, three-dimensional lightning mapping data from the Oklahoma Lightning Mapping Array (LMA), and balloon-borne vector electric field meter (EFM) measurements. The storm had a low flash rate (30 flashes in 40 min). Four charge regions were inferred from a combination of LMA and EFM data. Lower positive charge near 4 km and midlevel negative charge from 4.5 to 6 km MSL (from 0° to −6.5°C) were generated in and adjacent to a vigorous updraft pulse. Further midlevel negative charge from 4.5 to 6 km MSL and upper positive charge from 6 to 8 km (from −6.5° to −19°C) were generated later in quantity sufficient to initiate lightning as the updraft decayed. A negative screening layer was present near the storm top (8.5 km MSL, −25°C). Initial lightning flashes were between lower positive and midlevel negative charge and started occurring shortly after a cell began lofting hydrometeors into the mixed phase region, where graupel was formed. A leader from the storm’s first flash avoided a region where polarimetric radar suggested wet growth and the resultant absence of noninductive charging of those hydrometeors. Initiation locations of later flashes that propagated into the upper positive charge tracked the descending location of a polarimetric signature of graupel. As the storm decayed, electric fields greater than 160 kV m−1 exceeded the minimum threshold for lightning initiation suggested by the hypothesized runaway breakdown process at 5.5 km MSL, but lightning did not occur. The small spatial extent (≈100 m) of the large electric field may not have been sufficient to allow runaway breakdown to fully develop and initiate lightning.


Author(s):  
Hiromichi Obara ◽  
Ryousuke Ibata ◽  
Yusuke Kawai ◽  
Yasuaki Matsudair

The microscopic characteristics of a functional fluid for a micro polishing process were investigated by microscopic observation and micro particle image velocimetry. This functional fluid, which consists of suspended micro scale diamond particles in insulated silicon oil, has two specific flow structures under a high-voltage alternating electric field. One flow structure consists of a reciprocating flow generated in one direction between the electrodes under low-electric-field and high-frequency conditions. The other flow structure consists of a rotational flow formed under high-electric-field and low-frequency conditions. These specific flow structures contribute actively to a polishing process and to the development of micro fluidic devices in the future. In the present study, the effect of the electric field on specific flow structures and the mechanism of the induced flow are clarified.


Sign in / Sign up

Export Citation Format

Share Document