Conversion kinetics during melting of simulated nuclear waste glass feeds measured by dissolution of silica

2022 ◽  
Vol 579 ◽  
pp. 121363
Author(s):  
Pavel Ferkl ◽  
Pavel Hrma ◽  
Alexander Abboud ◽  
Donna Post Guillen ◽  
John Khawand ◽  
...  
2008 ◽  
Author(s):  
Sergey Stefanovsky ◽  
Alexander Barinov ◽  
Galina Varlakova ◽  
Irene Startseva ◽  
Michael I. Ojovan

2014 ◽  
Vol 7 ◽  
pp. 3-9 ◽  
Author(s):  
Étienne Vernaz ◽  
Jérôme Bruezière

1993 ◽  
Vol 333 ◽  
Author(s):  
A. Abdelouas ◽  
J. L. Crovisier ◽  
W. Lutze ◽  
R. Müller ◽  
W. Bernotat

ABSTRACTThe R7T7 and synthetic basaltic glasses were submitted to corrosion in a saline MgCl2dominated solution at 190°C. For both glasses, the early alteration product is a hydrotalcite-like compound in which HPO42-, SO4-2and Cl-substitutes to CO32. The measured d003spacing is 7.68 Å for the hydrotalcite formed from R7T7 glass and 7.62 Å for the hydrotalcite formed from basaltic glass which reflect the high aluminium content. Chemical microanalyses show that the hydrotalcite is subsequently covered by a silica-rich gel which evolves into saponite after few months.


1992 ◽  
Vol 294 ◽  
Author(s):  
X. Feng ◽  
J. K. Bates ◽  
C. R. Bradley ◽  
E. C. Buck

ABSTRACTStatic tests at SA/V (ratio of surface area of glass to solution volume) 20,000 m−1 on SRL 200 glass compositions show that, at long test periods, the simulated nuclear waste glass (nonradioactive) leaches faster than the corresponding radioactive glass by a factor of about 40, although comparative tests, done through 560 days, at lower SA/V, 2000 m−1, indicate little difference in the leach behavior of the two types of glasses. The similarity in leach behavior between radioactive and simulated glasses at SAN of 2000 m−1 or lower is also observed for SRL 165/42 and 131/11 compositions. The accelerated glass reaction with the simulated glass 200S is associated with the formation of crystalline phases such as clinoptilolite (or potassium feldspar), and a pH excursion. The radiation field generated by the fully radioactive glass reduces the solution pH. This lower pH, in turn, may retard the onset of increased reaction rate. The radiation field generated by the radioactive glasses does not directly affect the stability of the glass surface alteration layer under those conditions where the radioactive and simulated glasses react at the same rate. These results suggest that the fully radioactive nuclear waste glass 200R may maintain a much lower leach rate than the simulated 200S, if the lower pH in the 200R leachate can be sustained. Meaningful comparison tests between radioactive and simulated nuclear waste glasses should include long-term and high SA/V tests.


1986 ◽  
Vol 84 ◽  
Author(s):  
Roger D. Aines ◽  
Homer C. Weed ◽  
John K. Bates

AbstractThe hydration of an outer layer on nuclear waste glasses is known to occur during leaching, but the actual speciation of hydrogen (as water or hydroxyl groups) in these layers has not been determined. As part of the Nevada Nuclear Waste Storage Investigations Project, we have used infrared spectroscopy to determine hydrogen speciations in three nuclear waste glass compositions (SRL-131 & 165, and PNL 76-68), which were leached at 90°C (all glasses) or hydrated in a vapor-saturated atmosphere at 202°C (SRL-131 only). Hydroxyl groups were found in the surface layers of all the glasses. In addition, molecular water was found in the surface of SRL-131 and PNL 76-68 glasses that had been leached for several months in deionized water, and in the vapor-hydrated sample. The water/hydroxyl ratio increases with increasing reaction time; molecular water makes up most of the hydrogen in the thick reaction layers on vapor-phase hydrated glass while only hydroxyl occurs in the least reacted samples. Using the known molar absorptivities of water and hydroxyl in silica-rich glass the vapor-phase layer contained 4.8 moles/liter of molecular water, and 0.6 moles water in the form hydroxyl. A 15 micrometer layer on SRL-131 glass formed by leaching at 90°C contained a total of 4.9 moles/liter of water, 2/3 of which was as hydroxyl. The unreacted bulk glass contains about 0.018 moles/liter water, all as hydroxyl.The amount of hydrogen added to the SRL-131 glass was about 70% of the original Na + Li content, not the 300% that would result from alkali-hydronium ion (H30+) interdiffusion. If all the hydrogen is then assumed to be added as the result of alkali-H+ interdiffusion, the molecular water observed may have formed from condensation of the original hydroxyl groups according to:20H = H20 molecular + 00where 00 refers to a bridging oxygen, and OH refers to a hydroxyl group attached to a silicate polymer. The hydrated layer on the nuclear waste glasses appears to be of relatively low water content (4 to 7% by weight) and is not substantially hydroxylated. Thus, these layers do not have many of the properties associated with “gel” layers.


2010 ◽  
Vol 406 (3) ◽  
pp. 365-370 ◽  
Author(s):  
Aurélie Verney-Carron ◽  
Stéphane Gin ◽  
Guy Libourel

1984 ◽  
Vol 2 (4) ◽  
pp. 296-300 ◽  
Author(s):  
J.K. Bates ◽  
M.J. Steindler ◽  
P.L. McDaniel

Sign in / Sign up

Export Citation Format

Share Document