A blood brain barrier biorepository for disease-specific human brain microvascular endothelial cells: A new tool for neurologic and psychiatric research

2013 ◽  
Vol 333 ◽  
pp. e661
Author(s):  
T.R. Roesel
2015 ◽  
Vol 53 (4) ◽  
pp. 409-416 ◽  
Author(s):  
Humaira Qureshi ◽  
Saeed S. Hamid ◽  
Syed Shayan Ali ◽  
Javeria Anwar ◽  
Anwar Ali Siddiqui ◽  
...  

2021 ◽  
Author(s):  
Pasquale Mone ◽  
Jessica Gambardella ◽  
Xujun Wang ◽  
Stanislovas S. Jankauskas ◽  
Alessandro Matarese ◽  
...  

Abstract Neuropilin-1 is a transmembrane glycoprotein that has been implicated in several processes including angiogenesis and immunity. Recent evidence has also shown that it is implied in the cellular internalization of the severe acute respiratory syndrome coronavirus (SARS-CoV-2), which causes the coronavirus disease 2019 (COVID-19). We hypothesized that specific microRNAs can target Neuropilin-1. By combining bioinformatic and functional approaches, we identified miR-24 as a regulator of Neuropilin-1 transcription. Since Neuropilin-1 has been shown to play a key role in the endothelium-mediated regulation of the blood-brain barrier, we validated miR-24 as a functional modulator of Neuropilin-1 in human brain microvascular endothelial cells (hBMECs), which are the most suitable cell line for an in vitro blood–brain barrier model.


2014 ◽  
Vol 34 (6) ◽  
pp. 1047-1059 ◽  
Author(s):  
Shawna M Woollard ◽  
Biju Bhargavan ◽  
Fang Yu ◽  
Georgette D Kanmogne

HIV-1 genetic differences influence viral replication and progression to AIDS. HIV-1 circulating recombinant form (CRF)02_AG is the predominant viral subtype infecting humans in West and Central Africa, but its effects on HIV neuropathogenesis are not known. In the present study, we investigated the effects of Tat proteins from HIV-1 subtype B (Tat.B) and HIV-1 CRF02_AG (Tat.AG) on primary human brain microvascular endothelial cells (HBMEC), the major component of the blood–brain barrier (BBB). Using Affymetrix GeneChip Human Gene 1.0.ST arrays, we showed that Tat.AG had minimal effects while Tat.B induced transcriptional upregulation of 90 genes in HBMEC, including proinflammatory chemokines, complement components C3, C7, and complement factor B, matrix metalloproteinases (MMP)-3, MMP-10, and MMP-12. These results were confirmed by real-time PCR. Compared with Tat.AG, Tat.B significantly increased MMP-3, MMP-10, and MMP-12 activities in HBMEC, and the MMPs tissue inhibitor of metalloproteinase-2 blocked Tat-induced increase in MMPs activity. Western blot analyses also showed that Tat increased the expression of C3 and its cleaved fragment C3b in HBMEC. These data suggest that genetic differences between HIV-1 subtypes B and CRF02_AG influence the effects of Tat proteins from these two clades on HBMEC, including molecular and cellular functions, and canonical pathways, which would affect BBB dysfunction and viral neuropathogenesis.


Sign in / Sign up

Export Citation Format

Share Document