The detection of seeds alpha-synuclein using protein misfolding cyclic amplification(PMCA)

2017 ◽  
Vol 381 ◽  
pp. 972-973
Author(s):  
S. Yoshinaga ◽  
T. Yamanaka ◽  
Y. Furukawa ◽  
N. Nukina
2019 ◽  
Vol 129 ◽  
pp. 38-43 ◽  
Author(s):  
Alexis Fenyi ◽  
Laurène Leclair-Visonneau ◽  
Thomas Clairembault ◽  
Emmanuel Coron ◽  
Michel Neunlist ◽  
...  

2019 ◽  
Author(s):  
Simon Nicot ◽  
Jérémy Verchère ◽  
Maxime Belondrade ◽  
Charly Mayran ◽  
Dominique Bétemps ◽  
...  

Alpha-synuclein (α-syn) protein aggregation is associated with several neurodegenerative disorders collectively referred to as synucleinopathies, including Parkinson disease. We used protein misfolding cyclic amplification (PMCA) to study α-syn aggregation in brain homogenates of wild-type or transgenic mice expressing normal (D line) or A53T mutant (M83 line) human α-syn. We found that sonication-incubation cycles of M83 mouse brain gradually produce large quantities of SDS-resistant α-syn aggregates, involving both human and mouse proteins. These PMCA products, containing partially proteinase K resistant α-syn species, are competent to accelerate the onset of neurological symptoms after intracerebral inoculation to young M83 mice and to seed aggregate formation of α-syn following PMCA, including in D and wild-type mouse brain substrates. Our data indicate that similar to prions, PMCA can reproduce some characteristics of α-syn aggregation and seeded-propagation in vitro in a complex milieu. This opens new opportunities for the molecular study of synucleinopathies.


Author(s):  
Nelson Ferreira ◽  
Hjalte Gram ◽  
Zachary A. Sorrentino ◽  
Emil Gregersen ◽  
Sissel Ida Schmidt ◽  
...  

AbstractPathology consisting of intracellular aggregates of alpha-Synuclein (α-Syn) spread through the nervous system in a variety of neurodegenerative disorders including Parkinson’s disease, dementia with Lewy bodies, and multiple system atrophy. The discovery of structurally distinct α-Syn polymorphs, so-called strains, supports a hypothesis where strain-specific structures are templated into aggregates formed by native α-Syn. These distinct strains are hypothesised to dictate the spreading of pathology in the tissue and the cellular impact of the aggregates, thereby contributing to the variety of clinical phenotypes. Here, we present evidence of a novel α-Syn strain induced by the multiple system atrophy-associated oligodendroglial protein p25α. Using an array of biophysical, biochemical, cellular, and in vivo analyses, we demonstrate that compared to α-Syn alone, a substoichiometric concentration of p25α redirects α-Syn aggregation into a unique α-Syn/p25α strain with a different structure and enhanced in vivo prodegenerative properties. The α-Syn/p25α strain induced larger inclusions in human dopaminergic neurons. In vivo, intramuscular injection of preformed fibrils (PFF) of the α-Syn/p25α strain compared to α-Syn PFF resulted in a shortened life span and a distinct anatomical distribution of inclusion pathology in the brain of a human A53T transgenic (line M83) mouse. Investigation of α-Syn aggregates in brain stem extracts of end-stage mice demonstrated that the more aggressive phenotype of the α-Syn/p25α strain was associated with an increased load of α-Syn aggregates based on a Förster resonance energy transfer immunoassay and a reduced α-Syn aggregate seeding activity based on a protein misfolding cyclic amplification assay. When injected unilaterally into the striata of wild-type mice, the α-Syn/p25α strain resulted in a more-pronounced motoric phenotype than α-Syn PFF and exhibited a “tropism” for nigro-striatal neurons compared to α-Syn PFF. Overall, our data support a hypothesis whereby oligodendroglial p25α is responsible for generating a highly prodegenerative α-Syn strain in multiple system atrophy.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Maxime Bélondrade ◽  
Simon Nicot ◽  
Charly Mayran ◽  
Lilian Bruyere-Ostells ◽  
Florian Almela ◽  
...  

AbstractUnlike variant Creutzfeldt–Jakob disease prions, sporadic Creutzfeldt–Jakob disease prions have been shown to be difficult to amplify in vitro by protein misfolding cyclic amplification (PMCA). We assessed PMCA of pathological prion protein (PrPTSE) from 14 human sCJD brain samples in 3 substrates: 2 from transgenic mice expressing human prion protein (PrP) with either methionine (M) or valine (V) at position 129, and 1 from bank voles. Brain extracts representing the 5 major clinicopathological sCJD subtypes (MM1/MV1, MM2, MV2, VV1, and VV2) all triggered seeded PrPTSE amplification during serial PMCA with strong seed- and substrate-dependence. Remarkably, bank vole PrP substrate allowed the propagation of all sCJD subtypes with preservation of the initial molecular PrPTSE type. In contrast, PMCA in human PrP substrates was accompanied by a PrPTSE molecular shift during heterologous (M/V129) PMCA reactions, with increased permissiveness of V129 PrP substrate to in vitro sCJD prion amplification compared to M129 PrP substrate. Combining PMCA amplification sensitivities with PrPTSE electrophoretic profiles obtained in the different substrates confirmed the classification of 4 distinct major sCJD prion strains (M1, M2, V1, and V2). Finally, the level of sensitivity required to detect VV2 sCJD prions in cerebrospinal fluid was achieved.


2012 ◽  
Vol 7 (7) ◽  
pp. 1397-1409 ◽  
Author(s):  
Rodrigo Morales ◽  
Claudia Duran-Aniotz ◽  
Rodrigo Diaz-Espinoza ◽  
Manuel V Camacho ◽  
Claudio Soto

2014 ◽  
Vol 135 (1) ◽  
pp. 145-173 ◽  
Author(s):  
Monique Chyba ◽  
Jean-Michel Coron ◽  
Pierre Gabriel ◽  
Alain Jacquemard ◽  
Geoff Patterson ◽  
...  

F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 2072 ◽  
Author(s):  
Heather T Whittaker ◽  
Yichen Qui ◽  
Conceição Bettencourt ◽  
Henry Houlden

Multiple system atrophy (MSA) is one of the few neurodegenerative disorders where we have a significant understanding of the clinical and pathological manifestations but where the aetiology remains almost completely unknown. Research to overcome this hurdle is gaining momentum through international research collaboration and a series of genetic and molecular discoveries in the last few years, which have advanced our knowledge of this rare synucleinopathy. In MSA, the discovery of α-synuclein pathology and glial cytoplasmic inclusions remain the most significant findings. Families with certain types of α-synuclein mutations develop diseases that mimic MSA, and the spectrum of clinical and pathological features in these families suggests a spectrum of severity, from late-onset Parkinson’s disease to MSA. Nonetheless, controversies persist, such as the role of common α-synuclein variants in MSA and whether this disorder shares a common mechanism of spreading pathology with other protein misfolding neurodegenerative diseases. Here, we review these issues, specifically focusing on α-synuclein mutations.


Sign in / Sign up

Export Citation Format

Share Document