substrate dependence
Recently Published Documents


TOTAL DOCUMENTS

163
(FIVE YEARS 16)

H-INDEX

25
(FIVE YEARS 2)

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Hakan Göcerler ◽  
Simon Medina ◽  
Michael Adler ◽  
Josef Brenner ◽  
Andreas Tadler ◽  
...  

Purpose Dry eye syndrome is one of the most common reasons for eye-related discomfort which, without treatment, in some cases may even lead to corneal damage. Blinking, baseline and reflex lachrymation and drainage compromise the topical application of therapeutics demanding repeated, often hourly applications of common lubricants. In contrast, topically administered chitosan-N-acetylcysteine-based eye drops were reported to sustain on the ocular surface for more than 24 h. The thiolated biopolymer can interact with the corneal mucin layer thereby forming covalent disulphide bridges, which may contribute to extended residence times. Design/methodology/approach In this study, the tribological characteristics of four different lubricants including hyaluronic acid and chitosan-N-acetylcysteine containing commercially available eye drops were investigated. For this purpose, a representative test setup was developed, which mimics the contact between the cornea and the eyelid wiper. Gels with different elastic properties coated with a mucin layer were used as a substrate to mimic the corneal surface. Tests were conducted with a micro-tribometer, and friction values were recorded. Contact zones were characterized by X-ray photoelectron spectroscopy to investigate wear and thiol bonding on the surface. Findings Results revealed the lowest average coefficient of friction values for chitosan-N-acetylcysteine-based eye drops and substrate dependence of the test setup. Originality/value In this study, the authors introduced an in vitro system to test different types of eye drops so that chemical interaction with the mucin layer can be observed. These interactions change the tribological performance significantly and must be considered to have results relevant to the actual application.


Vacuum ◽  
2021 ◽  
pp. 110484
Author(s):  
Rizhi Chen ◽  
Yue Shen ◽  
Tuoshi Li ◽  
Jian Huang ◽  
Feng Gu ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Maxime Bélondrade ◽  
Simon Nicot ◽  
Charly Mayran ◽  
Lilian Bruyere-Ostells ◽  
Florian Almela ◽  
...  

AbstractUnlike variant Creutzfeldt–Jakob disease prions, sporadic Creutzfeldt–Jakob disease prions have been shown to be difficult to amplify in vitro by protein misfolding cyclic amplification (PMCA). We assessed PMCA of pathological prion protein (PrPTSE) from 14 human sCJD brain samples in 3 substrates: 2 from transgenic mice expressing human prion protein (PrP) with either methionine (M) or valine (V) at position 129, and 1 from bank voles. Brain extracts representing the 5 major clinicopathological sCJD subtypes (MM1/MV1, MM2, MV2, VV1, and VV2) all triggered seeded PrPTSE amplification during serial PMCA with strong seed- and substrate-dependence. Remarkably, bank vole PrP substrate allowed the propagation of all sCJD subtypes with preservation of the initial molecular PrPTSE type. In contrast, PMCA in human PrP substrates was accompanied by a PrPTSE molecular shift during heterologous (M/V129) PMCA reactions, with increased permissiveness of V129 PrP substrate to in vitro sCJD prion amplification compared to M129 PrP substrate. Combining PMCA amplification sensitivities with PrPTSE electrophoretic profiles obtained in the different substrates confirmed the classification of 4 distinct major sCJD prion strains (M1, M2, V1, and V2). Finally, the level of sensitivity required to detect VV2 sCJD prions in cerebrospinal fluid was achieved.


2020 ◽  
Vol 38 ◽  
pp. 47-53
Author(s):  
Shin Ichi Furusawa ◽  
Yuuki Fukuda

β-AgI thin films with thicknesses of 0.09–8.9 µm were prepared on polyethylene terephthalate (PET) substrate. Dependence of ionic conductivity on the thickness of the β-AgI thin film was measured via impedance spectroscopy in the temperature range of 300–330 K. It has been confirmed that the ionic conductivity of the b-AgI thin film is several hundred times higher than the b-AgI bulk. The enhancement of ionic conductivity is considered to be due to the formation of a high ion-conducting region near the hetero-interface region of b-AgI and PET. Furthermore, it has been suggested that the activation energy and carrier density may change depending on the distance from the interface, and the thickness dependence of enhancement in ionic conductivity may be related to the film thickness dependence of crystal orientation and structural disorder of β-AgI thin films.


2020 ◽  
Vol 127 (Suppl_1) ◽  
Author(s):  
Tariq R Altamimi ◽  
Timothy N Audam ◽  
Yuting Zheng ◽  
Andrew Gibb ◽  
Siqi Liu ◽  
...  

Mitochondrial supercomplexes are prominent in mammalian tissues that have high energy demand. Nevertheless, the mechanisms that regulate supercomplex formation and abundance remain unclear. In this study, we examined how myocardial fuel preference regulated by constitutive changes in phosphofructokinase (PFK) activity in vivo or by differential substrate provision to isolated mitochondria affect mitochondrial supercomplexes. Protein complexes from digitonin-solubilized cardiac mitochondria were resolved by blue-native polyacrylamide gel electrophoresis and were identified by mass spectrometry and immunoblotting to contain Complexes I, III, and IV as well as accessory proteins. Mitochondria from hearts with low PFK activity (Glyco Lo hearts) had higher mitochondrial supercomplex abundance and activity compared with mitochondria from wild-type (WT) or Glyco Hi hearts. Incubation of WT mitochondria with fatty acyl carnitine promoted higher supercomplex formation than did incubation with pyruvate, suggesting that substrate utilization is sufficient to regulate mitochondrial supercomplex abundance. These data are consistent with the hypothesis that mitochondrial supercomplex abundance is regulated in a substrate-dependent manner and suggest that metabolic scenarios favoring fat oxidation may promote supercomplex abundance.


2020 ◽  
Vol 176 (2) ◽  
pp. 446-459
Author(s):  
Emily B Warren ◽  
Miles R Bryan ◽  
Patricia Morcillo ◽  
Keisha N Hardeman ◽  
Michael Aschner ◽  
...  

Abstract Manganese (Mn) is an essential metal, but excessive exposures have been well-documented to culminate in neurotoxicity. Curiously, the precise mechanisms of Mn neurotoxicity are still unknown. One hypothesis suggests that Mn exerts its toxicity by inhibiting mitochondrial function, which then (if exposure levels are high and long enough) leads to cell death. Here, we used a Huntington’s disease cell model with known differential sensitivities to manganese—STHdhQ7/Q7 and STHdhQ111/Q111 cells—to examine the effects of acute Mn exposure on mitochondrial function. We determined toxicity thresholds for each cell line using both changes in cell number and caspase-3/7 activation. We used a range of acute Mn exposures (0–300 µM), both above and below the cytotoxic threshold, to evaluate mitochondria-associated metabolic balance, mitochondrial respiration, and substrate dependence. In both cell lines, we observed no effect on markers of mitochondrial function at subtoxic Mn exposures (below detectable levels of cell death), yet at supratoxic exposures (above detectable levels of cell death) mitochondrial function significantly declined. We validated these findings in primary striatal neurons. In cell lines, we further observed that subtoxic Mn concentrations do not affect glycolytic function or major intracellular metabolite quantities. These data suggest that in this system, Mn exposure impairs mitochondrial function only at concentrations coincident with or above the initiation of cell death and is not consistent with the hypothesis that mitochondrial dysfunction precedes or induces Mn cytotoxicity.


Sign in / Sign up

Export Citation Format

Share Document