scholarly journals Correction to: Aldehyde Production as a Calibrant of Ultrasonic Power Delivery During Protein Misfolding Cyclic Amplification

2021 ◽  
Vol 40 (1) ◽  
pp. 131-131
Author(s):  
Simon C. Drew
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Maxime Bélondrade ◽  
Simon Nicot ◽  
Charly Mayran ◽  
Lilian Bruyere-Ostells ◽  
Florian Almela ◽  
...  

AbstractUnlike variant Creutzfeldt–Jakob disease prions, sporadic Creutzfeldt–Jakob disease prions have been shown to be difficult to amplify in vitro by protein misfolding cyclic amplification (PMCA). We assessed PMCA of pathological prion protein (PrPTSE) from 14 human sCJD brain samples in 3 substrates: 2 from transgenic mice expressing human prion protein (PrP) with either methionine (M) or valine (V) at position 129, and 1 from bank voles. Brain extracts representing the 5 major clinicopathological sCJD subtypes (MM1/MV1, MM2, MV2, VV1, and VV2) all triggered seeded PrPTSE amplification during serial PMCA with strong seed- and substrate-dependence. Remarkably, bank vole PrP substrate allowed the propagation of all sCJD subtypes with preservation of the initial molecular PrPTSE type. In contrast, PMCA in human PrP substrates was accompanied by a PrPTSE molecular shift during heterologous (M/V129) PMCA reactions, with increased permissiveness of V129 PrP substrate to in vitro sCJD prion amplification compared to M129 PrP substrate. Combining PMCA amplification sensitivities with PrPTSE electrophoretic profiles obtained in the different substrates confirmed the classification of 4 distinct major sCJD prion strains (M1, M2, V1, and V2). Finally, the level of sensitivity required to detect VV2 sCJD prions in cerebrospinal fluid was achieved.


2012 ◽  
Vol 7 (7) ◽  
pp. 1397-1409 ◽  
Author(s):  
Rodrigo Morales ◽  
Claudia Duran-Aniotz ◽  
Rodrigo Diaz-Espinoza ◽  
Manuel V Camacho ◽  
Claudio Soto

2014 ◽  
Vol 135 (1) ◽  
pp. 145-173 ◽  
Author(s):  
Monique Chyba ◽  
Jean-Michel Coron ◽  
Pierre Gabriel ◽  
Alain Jacquemard ◽  
Geoff Patterson ◽  
...  

2019 ◽  
Vol 1 (1) ◽  
Author(s):  
Atsuko Takeuchi ◽  
Shirou Mohri ◽  
Hideaki Kai ◽  
Akira Tamaoka ◽  
Atsushi Kobayashi ◽  
...  

Abstract Fatal familial insomnia is a genetic prion disease, which is associated with the aspartic acid to asparagine substitution at codon 178 of the prion protein gene. Although the hallmark pathological feature is thalamic and olivary degeneration, there is a patient with an atypical fatal familial insomnia without the hallmark feature. The cause of the pathological variability is unclear. We analysed a Japanese fatal familial insomnia kindred and compared one atypical clinicopathological fatal familial insomnia phenotype case and typical fatal familial insomnia phenotype cases with transmission studies using multiple lines of knock-in mice and with protein misfolding cyclic amplification. We also analysed the transmissibility and the amplification properties of sporadic fatal insomnia. Transmission studies revealed that the typical fatal familial insomnia with thalamic and olivary degeneration showed successful transmission only using knock-in mice expressing human–mouse chimeric prion protein gene. The atypical fatal familial insomnia with spongiform changes showed successful transmission only using knock-in mice expressing bank vole prion protein gene. Two sporadic fatal insomnia cases with thalamic and olivary degeneration showed the same transmissibility as the typical fatal familial insomnia phenotype. Interestingly, one sporadic fatal insomnia case with thalamic/olivary degeneration and spongiform changes showed transmissibility of both the typical and atypical fatal familial insomnia phenotypes. Protein misfolding cyclic amplification could amplify both typical fatal familial insomnia cases and sporadic fatal insomnia cases but not the atypical fatal familial insomnia phenotype or other sporadic Creutzfeldt–Jakob disease subtypes. In addition to clinical findings and neuropathological features, the transmission properties and the amplification properties were different between the typical and atypical fatal familial insomnia phenotypes. It is suggested that two distinct prions were associated with the diversity in the fatal familial insomnia phenotype, and these two prions could also be detected in sporadic fatal insomnia.


FEBS Journal ◽  
2009 ◽  
Vol 276 (10) ◽  
pp. 2841-2848 ◽  
Author(s):  
Aiko Fujihara ◽  
Ryuichiro Atarashi ◽  
Takayuki Fuse ◽  
Kaori Ubagai ◽  
Takehiro Nakagaki ◽  
...  

Author(s):  
K. R. Wilt ◽  
L. J. Radziemski ◽  
H. A. Scarton

Recently, the efficient ultrasound transmission of power through a water barrier has been modeled using principles developed from modeling transmission through metal walls. The bulk of the latter effort was focused on a solution using two coaxially aligned piezoelectric transducers on opposite sides of the metallic transmission barrier to create an ultrasonic power delivery channel. In this work, a similar physical channel configuration is adopted, but with water replacing metal as the transmission media. Finite element models of several channels are presented which begin to quantize the possible transfer efficiencies of this type of power transmission channel. In these models, the effects of various different nominal operating frequencies on the efficiency of the system are considered, as well as the effects due to differences between the transmitting and receiving transducer diameters. Experiments with ultrasound transducers in water have illuminated the strengths of the current model and directions for improvements.


Sign in / Sign up

Export Citation Format

Share Document