Interfacial reactions between Ti grade 12 titanium alloy and stainless steel (SS-304)

2015 ◽  
Vol 457 ◽  
pp. 205-208 ◽  
Author(s):  
Pranesh Sengupta ◽  
G. Sharma ◽  
G.K. Dey
Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 762
Author(s):  
Huang ◽  
Liao ◽  
Yu ◽  
Liu ◽  
Wang

The effects of the package materials on the hot workability and stress-strain characteristics of high-Nb TiAl alloy with a nominal composition of Ti-46Al-8Nb (in at.%) were systematically studied via “sandwich structure” hot compression. TiAl sheet fabrication was conducted by hot pack rolling, and the microstructural characteristics and deformation mechanisms were investigated. Based on the analysis of compressed samples and stress-strain curves, the stainless steel/TiAl structure showed better deformation compatibility with homogeneous deformation and decreasing resistance. However, severe interfacial reactions were inevitable. Meanwhile, for the titanium alloy/TiAl structure, few interfacial reactions happened, but wavy deformation and high resistance complicated the compression process. Finally, a package structure with an outer stainless steel isolation layer and inner titanium alloy was determined for the pack rolling process. A TiAl sheet with no crack defects was obtained with 80% reduction. The pack-rolled TiAl sheet took on alternate microstructure of the grain-boundary Al-enriched ribbons and elongated lamellar colonies ribbons. The grain-boundary recrystallized α2 phase, lumpy γ phase, and massive α2/γ lamellae could be observed, which led to the scatter microstructure. The microstructural characteristics mainly resulted from the solute segregations of as-cast Ti-46Al-8Nb alloys, which triggered the local flow softening and deformation incompatibility during hot pack rolling.


Alloy Digest ◽  
1990 ◽  
Vol 39 (4) ◽  

Abstract ARMCO NITRONIC 50 STAINLESS STEEL provides a combination of corrosion resistance and strength not found in any other commercial material available in its price range. It has good mechanical properties at both elevated and sub-zero temperatures. It does not become magnetic when cold worked. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as creep. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-304. Producer or source: Baltimore Specialty Steels Corporation. Originally published as Nitronic 50, January 1975, revised April 1990.


2012 ◽  
Vol 459 ◽  
pp. 315-319 ◽  
Author(s):  
Ke Dian Wang ◽  
Wen Qiang Duan ◽  
Xue Song Mei ◽  
Wen Jun Wang

The experiments of micro-hole ablation are conducted firstly on titanium alloy Ti-6Al-4V with Nd: YAG millisecond laser. A significant factor which affects the depth of blind hole is found: the depth of recast material. This paper closely examines the regularity of recast depth varying with laser parameters, discovering that the ratio of recast depth to the entire hole depth decreases as pulse width decreases, and increases as peak power decreases. Verification experiment is conducted on stainless steel 1Cr13, eventually micro-hole with very thin recast layer is drilled when the maximum peak power and the minimum pulse width of the present millisecond laser are used.


Author(s):  
Xuejiao Shao ◽  
Juan Du ◽  
Liping Zhang ◽  
Hai Xie ◽  
Jun Tian ◽  
...  

Abstract In the code for nuclear equipment, the elasto-plastic correction factor KE is a correction factor when the stress range exceeds the yield limit for simplified elasto-plastic fatigue analysis. The parameters and expressions of KE for commonly used materials (such as austenitic stainless steel) are given in the RCC-M and ASME code, but the parameters of KE for titanium alloy materials is lacking. Based on the cyclic elasto-plastic constitutive model of Z2CND18.12 (nitrogen control) and KE parameters of austenitic stainless steel given in the code, considering various sensitive factors, a numerical calculation method for determining KE correlation coefficient is established. The elasto-plastic constitutive model of TA16 alloy with nonlinear kinematic hardening was established by the uniaxial tension, strain and stress cycling tests of TA16 titanium alloy. Based on the numerical calculation method of KE and the constitutive model of TA16 titanium alloy, the expression and correlation coefficient of KE for TA16 titanium alloy were determined.


Sign in / Sign up

Export Citation Format

Share Document