scholarly journals Relationship between knee joint contact forces and external knee joint moments in patients with medial knee osteoarthritis: effects of gait modifications

2018 ◽  
Vol 26 (9) ◽  
pp. 1203-1214 ◽  
Author(s):  
R.E. Richards ◽  
M.S. Andersen ◽  
J. Harlaar ◽  
J.C. van den Noort
2018 ◽  
Vol 34 (5) ◽  
pp. 419-423 ◽  
Author(s):  
Christopher M. Saliba ◽  
Allison L. Clouthier ◽  
Scott C.E. Brandon ◽  
Michael J. Rainbow ◽  
Kevin J. Deluzio

Abnormal loading of the knee joint contributes to the pathogenesis of knee osteoarthritis. Gait retraining is a noninvasive intervention that aims to reduce knee loads by providing audible, visual, or haptic feedback of gait parameters. The computational expense of joint contact force prediction has limited real-time feedback to surrogate measures of the contact force, such as the knee adduction moment. We developed a method to predict knee joint contact forces using motion analysis and a statistical regression model that can be implemented in near real-time. Gait waveform variables were deconstructed using principal component analysis, and a linear regression was used to predict the principal component scores of the contact force waveforms. Knee joint contact force waveforms were reconstructed using the predicted scores. We tested our method using a heterogenous population of asymptomatic controls and subjects with knee osteoarthritis. The reconstructed contact force waveforms had mean (SD) root mean square differences of 0.17 (0.05) bodyweight compared with the contact forces predicted by a musculoskeletal model. Our method successfully predicted subject-specific shape features of contact force waveforms and is a potentially powerful tool in biofeedback and clinical gait analysis.


Author(s):  
Jana Holder ◽  
Ursula Trinler ◽  
Andrea Meurer ◽  
Felix Stief

The assessment of knee or hip joint loading by external joint moments is mainly used to draw conclusions on clinical decision making. However, the correlation between internal and external loads has not been systematically analyzed. This systematic review aims, therefore, to clarify the relationship between external and internal joint loading measures during gait. A systematic database search was performed to identify appropriate studies for inclusion. In total, 4,554 articles were identified, while 17 articles were finally included in data extraction. External joint loading parameters were calculated using the inverse dynamics approach and internal joint loading parameters by musculoskeletal modeling or instrumented prosthesis. It was found that the medial and total knee joint contact forces as well as hip joint contact forces in the first half of stance can be well predicted using external joint moments in the frontal plane, which is further improved by including the sagittal joint moment. Worse correlations were found for the peak in the second half of stance as well as for internal lateral knee joint contact forces. The estimation of external joint moments is useful for a general statement about the peak in the first half of stance or for the maximal loading. Nevertheless, when investigating diseases as valgus malalignment, the estimation of lateral knee joint contact forces is necessary for clinical decision making because external joint moments could not predict the lateral knee joint loading sufficient enough. Dependent on the clinical question, either estimating the external joint moments by inverse dynamics or internal joint contact forces by musculoskeletal modeling should be used.


Author(s):  
Luiz Fernando Approbato Selistre ◽  
Glaucia Helena Gonçalves ◽  
Fernando Augusto Vasilceac ◽  
Paula Regina Mendes da Silva Serrão ◽  
Theresa Helissa Nakagawa ◽  
...  

2013 ◽  
Vol 14 (1) ◽  
Author(s):  
Mark W Creaby ◽  
Tim V Wrigley ◽  
Boon-Whatt Lim ◽  
Rana S Hinman ◽  
Adam L Bryant ◽  
...  

2019 ◽  
Vol 68 ◽  
pp. 443-448 ◽  
Author(s):  
M. Mannisi ◽  
A. Dell’Isola ◽  
M.S. Andersen ◽  
J. Woodburn

Sign in / Sign up

Export Citation Format

Share Document