Prediction of Knee Joint Contact Forces From External Measures Using Principal Component Prediction and Reconstruction

2018 ◽  
Vol 34 (5) ◽  
pp. 419-423 ◽  
Author(s):  
Christopher M. Saliba ◽  
Allison L. Clouthier ◽  
Scott C.E. Brandon ◽  
Michael J. Rainbow ◽  
Kevin J. Deluzio

Abnormal loading of the knee joint contributes to the pathogenesis of knee osteoarthritis. Gait retraining is a noninvasive intervention that aims to reduce knee loads by providing audible, visual, or haptic feedback of gait parameters. The computational expense of joint contact force prediction has limited real-time feedback to surrogate measures of the contact force, such as the knee adduction moment. We developed a method to predict knee joint contact forces using motion analysis and a statistical regression model that can be implemented in near real-time. Gait waveform variables were deconstructed using principal component analysis, and a linear regression was used to predict the principal component scores of the contact force waveforms. Knee joint contact force waveforms were reconstructed using the predicted scores. We tested our method using a heterogenous population of asymptomatic controls and subjects with knee osteoarthritis. The reconstructed contact force waveforms had mean (SD) root mean square differences of 0.17 (0.05) bodyweight compared with the contact forces predicted by a musculoskeletal model. Our method successfully predicted subject-specific shape features of contact force waveforms and is a potentially powerful tool in biofeedback and clinical gait analysis.

2016 ◽  
Vol 49 (16) ◽  
pp. 3868-3874 ◽  
Author(s):  
John W. Ramsay ◽  
Clifford L. Hancock ◽  
Meghan P. O’Donovan ◽  
Tyler N. Brown

Sensors ◽  
2019 ◽  
Vol 19 (7) ◽  
pp. 1681 ◽  
Author(s):  
Jason Konrath ◽  
Angelos Karatsidis ◽  
H. Schepers ◽  
Giovanni Bellusci ◽  
Mark de Zee ◽  
...  

Knee osteoarthritis is a major cause of pain and disability in the elderly population with many daily living activities being difficult to perform as a result of this disease. The present study aimed to estimate the knee adduction moment and tibiofemoral joint contact force during daily living activities using a musculoskeletal model with inertial motion capture derived kinematics in an elderly population. Eight elderly participants were instrumented with 17 inertial measurement units, as well as 53 opto-reflective markers affixed to anatomical landmarks. Participants performed stair ascent, stair descent, and sit-to-stand movements while both motion capture methods were synchronously recorded. A musculoskeletal model containing 39 degrees-of-freedom was used to estimate the knee adduction moment and tibiofemoral joint contact force. Strong to excellent Pearson correlation coefficients were found for the IMC-derived kinematics across the daily living tasks with root mean square errors (RMSE) between 3° and 7°. Furthermore, moderate to strong Pearson correlation coefficients were found in the knee adduction moment and tibiofemoral joint contact forces with RMSE between 0.006–0.014 body weight × body height and 0.4 to 1 body weights, respectively. These findings demonstrate that inertial motion capture may be used to estimate knee adduction moments and tibiofemoral contact forces with comparable accuracy to optical motion capture.


2013 ◽  
Vol 135 (2) ◽  
Author(s):  
Kurt Manal ◽  
Thomas S. Buchanan

Computational models that predict internal joint forces have the potential to enhance our understanding of normal and pathological movement. Validation studies of modeling results are necessary if such models are to be adopted by clinicians to complement patient treatment and rehabilitation. The purposes of this paper are: (1) to describe an electromyogram (EMG)-driven modeling approach to predict knee joint contact forces, and (2) to evaluate the accuracy of model predictions for two distinctly different gait patterns (normal walking and medial thrust gait) against known values for a patient with a force recording knee prosthesis. Blinded model predictions and revised model estimates for knee joint contact forces are reported for our entry in the 2012 Grand Challenge to predict in vivo knee loads. The EMG-driven model correctly predicted that medial compartment contact force for the medial thrust gait increased despite the decrease in knee adduction moment. Model accuracy was high: the difference in peak loading was less than 0.01 bodyweight (BW) with an R2 = 0.92. The model also predicted lateral loading for the normal walking trial with good accuracy exhibiting a peak loading difference of 0.04 BW and an R2 = 0.44. Overall, the EMG-driven model captured the general shape and timing of the contact force profiles and with accurate input data the model estimated joint contact forces with sufficient accuracy to enhance the interpretation of joint loading beyond what is possible from data obtained from standard motion capture studies.


Author(s):  
Noor Arifah Azwani Abdul Yamin ◽  
Khairul Salleh Basaruddin ◽  
Ahmad Faizal Salleh ◽  
Ruslizam Daud ◽  
Mohd Hanafi Mat Som

2020 ◽  
Author(s):  
Takuma Inai ◽  
Tomoya Takabayashi ◽  
Mutsuaki Edama ◽  
Masayoshi Kubo

Abstract Background: Excessive mechanical loading, in the form of the joint contact force, has been reported to promote osteoarthritis in vitro and vivo in mice. However, it has also been reported that an excessive hip adduction moment impulse during the stance phase likely contributes to the progression of hip osteoarthritis. The relationship between the hip adduction moment impulse and hip joint contact force (impulse, and first and second peaks) during the stance phase is unclear. The objective of the present study was to clarify this relationship. Methods: A public dataset pertaining to the overground walking of 84 healthy adults, in which the participants walked at a self-selected speed, was considered. The data of three trials for each participant were analyzed. The relationship between the hip adduction moment and hip joint contact force, in terms of the impulse and first and second peaks, during the stance phase was evaluated using correlation coefficients.Results: The hip adduction moment impulse during the stance phase was positively correlated with the hip joint contact force impulse and not correlated with the first and second peak hip joint contact forces. Furthermore, the first and second peak hip adduction moments during the stance phase were positively correlated with the first and second peak hip joint contact forces, respectively. Conclusions: These findings indicate that the hip joint contact force impulse during the stance phase can be used as an index to determine the risk factors for the progression of hip osteoarthritis.


Sign in / Sign up

Export Citation Format

Share Document