The Use of a Setting Accelerator and Its Effect on pH and Calcium Ion Release of Mineral Trioxide Aggregate and White Portland Cement

2006 ◽  
Vol 32 (12) ◽  
pp. 1194-1197 ◽  
Author(s):  
E ANTUNESBORTOLUZZI ◽  
N JUAREZBROON ◽  
M ANTONIOHUNGARODUARTE ◽  
A DEOLIVEIRADEMARCHI ◽  
C MONTEIROBRAMANTE
2013 ◽  
Vol 39 (12) ◽  
pp. 1603-1606 ◽  
Author(s):  
Giane da Silva Linhares ◽  
Maximiliano Sérgio Cenci ◽  
César Blaas Knabach ◽  
Camila Mizette Oliz ◽  
Mariana Antunes Vieira ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Toshiaki Baba ◽  
Yasuhisa Tsujimoto

The purpose of this study was to improve the operability of calcium silicate cements (CSCs) such as mineral trioxide aggregate (MTA) cement. The flow, working time, and setting time of CSCs with different compositions containing low-viscosity methyl cellulose (MC) or hydroxypropyl cellulose (HPC) additive were examined according to ISO 6876-2012; calcium ion release analysis was also conducted. MTA and low-heat Portland cement (LPC) including 20% fine particle zirconium oxide (ZO group), LPC including zirconium oxide and 2 wt% low-viscosity MC (MC group), and HPC (HPC group) were tested. MC and HPC groups exhibited significantly higher flow values and setting times than other groups (p<0.05). Additionally, flow values of these groups were higher than the ISO 6876-2012 reference values; furthermore, working times were over 10 min. Calcium ion release was retarded with ZO, MC, and HPC groups compared with MTA. The concentration of calcium ions was decreased by the addition of the MC or HPC group compared with the ZO group. When low-viscosity MC or HPC was added, the composition of CSCs changed, thus fulfilling the requirements for use as root canal sealer. Calcium ion release by CSCs was affected by changing the CSC composition via the addition of MC or HPC.


2012 ◽  
Vol 38 (3) ◽  
pp. 394-397 ◽  
Author(s):  
Marco Antonio Hungaro Duarte ◽  
Paloma Gagliardi Minotti ◽  
Clarissa Teles Rodrigues ◽  
Ronald Ordinola Zapata ◽  
Clovis Monteiro Bramante ◽  
...  

2006 ◽  
Vol 14 (5) ◽  
pp. 305-311 ◽  
Author(s):  
Norberto Juárez Broon ◽  
Clovis Monteiro Bramante ◽  
Gerson Francisco de Assis ◽  
Eduardo Antunes Bortoluzzi ◽  
Norberti Bernardineli ◽  
...  

Fourteen root perforations were performed for microscopic evaluation of the repair of interradicular tissue in dogs' teeth. These perforations were accomplished at low-speed with a STP 58 bur at the cervical third of the mesial root toward the furcation under irrigation with saline solution, followed by immediate sealing with ProRoot MTA, MTA-Angelus and white Portland cement. The dogs were killed after 90 days, revealing good results. The Kruskal-Wallis test did not demonstrate any statistically significant difference. It was concluded that the three materials showed good sealing in mineralized tissue, with complete closure, and they were free of inflammation in most teeth.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 417
Author(s):  
Indra Primathena ◽  
Denny Nurdin ◽  
Hendra Hermawan ◽  
Arief Cahyanto

Mineral trioxide aggregate (MTA) is an ideal yet costly endodontic sealer material. Tricalcium silicate-white Portland cement (TS-WPC) seems to have similar characteristics to those of MTA. This work aims to characterize a modified TS-WPC and evaluate its antibacterial properties as a potential endodontic sealer material. The modified TS-WPC was synthesized from a 4:1 mixture of sterilized Indocement TS-WPC and bismuth trioxide using a simple solution method with 99.9% isopropanol. The mixture was stirred until it was homogenous, centrifuged, and dried. The material was then characterized using infrared spectroscopy, X-ray diffraction, and electron microscopy and subjected to antibacterial evaluation against Enterococcus faecalis using a Mueller–Hinton agar inhibition test. The results showed that the material was characterized by main functional groups of hydroxyls, silicate, bismuth trioxide, and tricalcium silicate, like those of a commercial MTA-based sealer, both tested after hydration. Modified TS-WPC before hydration showed similar powder morphology and size to the commercial one, indicating the ease of manipulation. Both materials exhibited antibacterial activity due to calcium dihydroxide’s ability to absorb carbon dioxide, which is essential for the anaerobic E. faecalis, with minimum inhibitory effect and bactericidal concentrations of 12,500 ppm and 25,000 ppm, respectively. The modified TS-WPC has the potential to become a cost-effective alternative endodontic sealer material.


2009 ◽  
Vol 35 (4) ◽  
pp. 550-554 ◽  
Author(s):  
Eduardo Antunes Bortoluzzi ◽  
Norberto Juárez Broon ◽  
Clovis Monteiro Bramante ◽  
Wilson Tadeu Felippe ◽  
Mario Tanomaru Filho ◽  
...  

2013 ◽  
Vol 47 (2) ◽  
pp. 120-126 ◽  
Author(s):  
B. C. Cavenago ◽  
T. C. Pereira ◽  
M. A. H. Duarte ◽  
R. Ordinola-Zapata ◽  
M. A. Marciano ◽  
...  

2009 ◽  
Vol 35 (10) ◽  
pp. 1418-1421 ◽  
Author(s):  
Mário Tanomaru-Filho ◽  
Frederico Bordini Chaves Faleiros ◽  
Juliana Nogueira Saçaki ◽  
Marco Antonio Hungaro Duarte ◽  
Juliane Maria Guerreiro-Tanomaru

Sign in / Sign up

Export Citation Format

Share Document