Risk Prediction Models for Inadvertent Intraoperative Hypothermia: A Systematic Review

Author(s):  
Lupei Yan ◽  
Lili Yao ◽  
Qinghua Zhao ◽  
Mingzhao Xiao ◽  
Yuerong Li ◽  
...  
2019 ◽  
Vol 35 (10) ◽  
pp. S94-S95
Author(s):  
N. Aleksova ◽  
A. Alba ◽  
V. Molinero ◽  
K. Connolly ◽  
A. Orchanian-Cheff ◽  
...  

2017 ◽  
Vol 20 (4) ◽  
pp. 718-726 ◽  
Author(s):  
Anoukh van Giessen ◽  
Jaime Peters ◽  
Britni Wilcher ◽  
Chris Hyde ◽  
Carl Moons ◽  
...  

BMC Cancer ◽  
2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Michele Sassano ◽  
Marco Mariani ◽  
Gianluigi Quaranta ◽  
Roberta Pastorino ◽  
Stefania Boccia

Abstract Background Risk prediction models incorporating single nucleotide polymorphisms (SNPs) could lead to individualized prevention of colorectal cancer (CRC). However, the added value of incorporating SNPs into models with only traditional risk factors is still not clear. Hence, our primary aim was to summarize literature on risk prediction models including genetic variants for CRC, while our secondary aim was to evaluate the improvement of discriminatory accuracy when adding SNPs to a prediction model with only traditional risk factors. Methods We conducted a systematic review on prediction models incorporating multiple SNPs for CRC risk prediction. We tested whether a significant trend in the increase of Area Under Curve (AUC) according to the number of SNPs could be observed, and estimated the correlation between AUC improvement and number of SNPs. We estimated pooled AUC improvement for SNP-enhanced models compared with non-SNP-enhanced models using random effects meta-analysis, and conducted meta-regression to investigate the association of specific factors with AUC improvement. Results We included 33 studies, 78.79% using genetic risk scores to combine genetic data. We found no significant trend in AUC improvement according to the number of SNPs (p for trend = 0.774), and no correlation between the number of SNPs and AUC improvement (p = 0.695). Pooled AUC improvement was 0.040 (95% CI: 0.035, 0.045), and the number of cases in the study and the AUC of the starting model were inversely associated with AUC improvement obtained when adding SNPs to a prediction model. In addition, models constructed in Asian individuals achieved better AUC improvement with the incorporation of SNPs compared with those developed among individuals of European ancestry. Conclusions Though not conclusive, our results provide insights on factors influencing discriminatory accuracy of SNP-enhanced models. Genetic variants might be useful to inform stratified CRC screening in the future, but further research is needed.


2021 ◽  
Author(s):  
Xuecheng Zhang ◽  
Kehua Zhou ◽  
Jingjing Zhang ◽  
Ying Chen ◽  
Hengheng Dai ◽  
...  

Abstract Background Nearly a third of patients with acute heart failure (AHF) die or are readmitted within three months after discharge, accounting for the majority of costs associated with heart failure-related care. A considerable number of risk prediction models, which predict outcomes for mortality and readmission rates, have been developed and validated for patients with AHF. These models could help clinicians stratify patients by risk level and improve decision making, and provide specialist care and resources directed to high-risk patients. However, clinicians sometimes reluctant to utilize these models, possibly due to their poor reliability, the variety of models, and/or the complexity of statistical methodologies. Here, we describe a protocol to systematically review extant risk prediction models. We will describe characteristics, compare performance, and critically appraise the reporting transparency and methodological quality of risk prediction models for AHF patients. Method Embase, Pubmed, Web of Science, and the Cochrane Library will be searched from their inception onwards. A back word will be searched on derivation studies to find relevant external validation studies. Multivariable prognostic models used for AHF and mortality and/or readmission rate will be eligible for review. Two reviewers will conduct title and abstract screening, full-text review, and data extraction independently. Included models will be summarized qualitatively and quantitatively. We will also provide an overview of critical appraisal of the methodological quality and reporting transparency of included studies using the Prediction model Risk of Bias Assessment Tool(PROBAST tool) and the Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis(TRIPOD statement). Discussion The result of the systematic review could help clinicians better understand and use the prediction models for AHF patients, as well as make standardized decisions about more precise, risk-adjusted management. Systematic review registration : PROSPERO registration number CRD42021256416.


2017 ◽  
Vol 32 (suppl_2) ◽  
pp. ii68-ii76 ◽  
Author(s):  
Rémi Kaboré ◽  
Maria C. Haller ◽  
Jérôme Harambat ◽  
Georg Heinze ◽  
Karen Leffondré

2021 ◽  
Author(s):  
Maomao Cao ◽  
He Li ◽  
Dianqin Sun ◽  
Siyi He ◽  
Yadi Zheng ◽  
...  

Abstract Background Prediction of liver cancer risk is beneficial to define high-risk population of liver cancer and guide clinical decisions. We aimed to review and critically appraise the quality of existing risk-prediction models for liver cancer. Methods This systematic review followed the guidelines of CHARMS (Checklist for Critical Appraisal and data extraction for systematic Reviews of prediction Modelling Studies) and Preferred Reporting Items for Systematic Reviews and Meta (PRISMA). We searched for PubMed, Embase, Web of Science, and the Cochrane Library from inception to July 2020. Prediction model Risk Of Bias Assessment Tool was used to assess the risk of bias of all potential articles. A narrative description and meta-analysis were conducted. Results After removal irrespective and duplicated citations, 20 risk prediction publications were finally included. Within the 20 studies, 15 studies performed model derivation and validation process, three publications only conducted developed procedure without validation and two articles were used to validate existing models. Discrimination was expressed as area under curve or C statistic, which was acceptable for most models, ranging from 0.64 to 0.96. Calibration of the predictions model were rarely assessed. All models were graded at high risk of bias. The risk bias of applicability in 13 studies was considered low. Conclusions This systematic review gives an overall review of the prediction risk models for liver cancer, pointing out several methodological issues in their development. No prediction risk models were recommended due to the high risk of bias.Systematic review registration: This systematic has been registered in PROSPERO (International Prospective Register of Systemic Review: CRD42020203244).


Sign in / Sign up

Export Citation Format

Share Document