scholarly journals Direction-fixed positional nystagmus following head-roll testing; how is it related with a vestibular pathology?

Author(s):  
Sertac Yetiser ◽  
Dilay Ince
2019 ◽  
Vol 9 (1) ◽  
pp. 73
Author(s):  
Sung Kyun Kim ◽  
Sung Won Li ◽  
Seok Min Hong

Background: Persistent geotropic direction-changing positional nystagmus (DCPN) has the characteristics of cupulopathy, but its underlying pathogenesis is not known. We investigated the relationship of the results of the head roll test, bow and lean test, and side of the null plane between persistent and transient geotropic DCPN to determine the lesion side of persistent geotropic DCPN and understand its mechanism. Methods: We enrolled 25 patients with persistent geotropic DCPN and 41 with transient geotropic DCPN. We compared the results of the head roll test, bow and lean test, and side of the null plane between the two groups. Results: The rates of bowing and leaning nystagmus were significantly higher in the persistent DCPN group. Only 16.0% of the persistent DCPN patients had stronger nystagmus in the head roll test and the null plane on the same side. The rates of the direction of bowing nystagmus in the bow and lean test and stronger nystagmus in the head roll test on the same side were also significantly lower in persistent DCPN than in transient DCPN. Conclusion: It was difficult to determine the lesion side in persistent geotropic DCPN using the direction of stronger nystagmus in the head roll test and null plane when the direction of the stronger nystagmus and null plane were opposite. Further study is needed to understand the position of the cupula according to head rotation and the anatomical position in persistent geotropic DCPN.


2021 ◽  
Vol 25 (1) ◽  
pp. 43-48
Author(s):  
Sertac Yetiser

Background and Objectives: Conflicting mechanisms have been reported about spontaneous reversal of positional nystagmus during head-roll maneuver in patients with benign paroxysmal positional vertigo (BPPV). The objective of this study is to review the reports about the characteristics and possible mechanisms of reversing positional nystagmus and to present seven new cases.Subjects and Methods: Seven cases (5 males, 2 females; 4 left-sided, 3 right-sided) were recruited among 732 patients with BPPV seen outpatient clinic between 2009 and 2019. Diagnosis of lateral canal canalolithiasis was confirmed when transient geotropic nystagmus was documented during head-roll test. Reversing positional nystagmus was analyzed in each case and clinical characteristics of the patients were documented.Results: The age of patients was ranging between 30 to 64 years (46.44±10.91). Duration of symptoms was short (21.34±19.74). Six of them had a story of head trauma. Initial latency was short. First, intense geotropic nystagmus was observed following provocative head-roll position on the affected side. There was short “silent phase”. Then, a longer second-phase of reversed nystagmus was noted. Total duration of nystagmus was 78.40±6.82 seconds. Maximal slow phase velocity was 24.05±6.34 deg/sec. All patients were cured with barbeque maneuver.Conclusions: Ipsilateral reversing positional nystagmus during head-roll maneuver is due to lateral canal canalolithiasis. Mechanism is likely to be due to endolymphatic double flow. Bilateral cases may be due to simultaneous co-existence of canalolithiasis and cupulolithiasis. Longer recording of nystagmus is recommended not to miss the cases with spontaneous direction-changing positional nystagmus.


Author(s):  
Mark T. Banovetz ◽  
Rami I Lake ◽  
Ashley A. Blackwell ◽  
Jenna R. Osterlund Oltmanns ◽  
Ericka A. Schaeffer ◽  
...  

1985 ◽  
Vol 100 (3-4) ◽  
pp. 172-179 ◽  
Author(s):  
Mark J. M. Koolen ◽  
Patrick L. M. Huygen ◽  
Jero Calafat ◽  
Bernard A. M. Van Der Zeijst
Keyword(s):  

2016 ◽  
Vol 368 ◽  
pp. 249-253 ◽  
Author(s):  
Kazumitsu Amari ◽  
Yosuke Kudo ◽  
Kosuke Watanabe ◽  
Masahiro Yamamoto ◽  
Koji Takahashi ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-3
Author(s):  
Akihide Ichimura ◽  
Shigeto Itani

Here, we report a patient with persistent positional upbeat nystagmus in a straight supine position with no evident abnormal central nervous system findings. A 43-year-old woman with rotatory positional vertigo and nausea visited our clinic 7 days after the onset. Initially, we observed persistent upbeat nystagmus in straight supine position with a latency of 2 s during the supine head roll test. However, an upbeat nystagmus disappeared on turning from straight to the left ear-down supine position, and while turning from the left to right ear-down position, an induced slight torsional nystagmus towards the right for >22 s was observed. In the Dix–Hallpike test, the left head-hanging position provoked torsional nystagmus towards the right for 50 s. In prone seated position, downbeat nystagmus with torsional component towards the left was observed for 45 s. Neurological examination and brain computed tomography revealed no abnormal findings. We speculated that persistent positional upbeat nystagmus in this patient was the result of canalolithiasis of benign paroxysmal positional vertigo of bilateral posterior semicircular canals.


2013 ◽  
Vol 110 (3) ◽  
pp. 732-747 ◽  
Author(s):  
T. Scott Murdison ◽  
Chanel A. Paré-Bingley ◽  
Gunnar Blohm

To compute spatially correct smooth pursuit eye movements, the brain uses both retinal motion and extraretinal signals about the eyes and head in space ( Blohm and Lefèvre 2010 ). However, when smooth eye movements rely solely on memorized target velocity, such as during anticipatory pursuit, it is unknown if this velocity memory also accounts for extraretinal information, such as head roll and ocular torsion. To answer this question, we used a novel behavioral updating paradigm in which participants pursued a repetitive, spatially constant fixation-gap-ramp stimulus in series of five trials. During the first four trials, participants' heads were rolled toward one shoulder, inducing ocular counterroll (OCR). With each repetition, participants increased their anticipatory pursuit gain, indicating a robust encoding of velocity memory. On the fifth trial, they rolled their heads to the opposite shoulder before pursuit, also inducing changes in ocular torsion. Consequently, for spatially accurate anticipatory pursuit, the velocity memory had to be updated across changes in head roll and ocular torsion. We tested how the velocity memory accounted for head roll and OCR by observing the effects of changes to these signals on anticipatory trajectories of the memory decoding (fifth) trials. We found that anticipatory pursuit was updated for changes in head roll; however, we observed no evidence of compensation for OCR, representing the absence of ocular torsion signals within the velocity memory. This indicated that the directional component of the memory must be coded retinally and updated to account for changes in head roll, but not OCR.


Sign in / Sign up

Export Citation Format

Share Document