Techno-economic analysis of long-duration energy storage and flexible power generation technologies to support high-variable renewable energy grids

Joule ◽  
2021 ◽  
Author(s):  
Chad A. Hunter ◽  
Michael M. Penev ◽  
Evan P. Reznicek ◽  
Joshua Eichman ◽  
Neha Rustagi ◽  
...  
2019 ◽  
Vol 31 (5) ◽  
pp. 860-869 ◽  
Author(s):  
Min-Su Kang ◽  
Young-Kwon Park ◽  
Kyung-Tae Kim

In this study, the optimal capacity of a battery and power conditioning system (PCS) of energy storage system were calculated. In addition, economic analysis was conducted to determine the optimal equipment standard, taking the government support plan into account. In addition, the changes in the power generation pattern were examined when the energy storage system and photovoltaic (PV) were connected to verify the power peak management efficiency of the energy storage system. Moreover, the effect of the energy storage system support policy was assessed by comparing the economic efficiency of single-PV equipment and energy storage system-connected equipment by the internal rate of return. Internal rate of return was analyzed by the change in cost of energy storage system equipment and the price of system marginal price/renewable energy certificate, which was a sales factor, and used for economic forecasting of the energy storage system. To accomplish this, the 2015 power generation output data (daily average 3.69 h power generation) of LG Hausys Ulsan station were converted to small-scale (3 MW) and large-scale (10 MW) solar power and a model that calculated the factor capacity of battery and the PCS capacity of the energy storage system was then constructed. Furthermore, the selected battery capacity and PCS capacity were analyzed separately by economic analysis to propose an energy storage system equipment standard, which could guarantee the optimal economic efficiency. Finally, based on the “Guideline for Management and Operation of Mandatory Supply for New and Renewable Energy” established by the Ministry of Commerce Industry and Energy, the profit model applied to the economic analysis was limited to an energy storage system charged from 10:00 to 16:00.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2503
Author(s):  
Paulo Rotella Junior ◽  
Luiz Célio Souza Rocha ◽  
Sandra Naomi Morioka ◽  
Ivan Bolis ◽  
Gianfranco Chicco ◽  
...  

Sources such as solar and wind energy are intermittent, and this is seen as a barrier to their wide utilization. The increasing grid integration of intermittent renewable energy sources generation significantly changes the scenario of distribution grid operations. Such operational challenges are minimized by the incorporation of the energy storage system, which plays an important role in improving the stability and the reliability of the grid. This study provides the review of the state-of-the-art in the literature on the economic analysis of battery energy storage systems. The paper makes evident the growing interest of batteries as energy storage systems to improve techno-economic viability of renewable energy systems; provides a comprehensive overview of key methodological possibilities for researchers interested in economic analysis of battery energy storage systems; indicates the need to use adequate economic indicators for investment decisions; and identifies key research topics of the analyzed literature: (i) photovoltaic systems with battery energy storage systems for residential areas, (ii) comparison between energy storage technologies, (iii) power quality improvement. The last key contribution is the proposed research agenda.


2013 ◽  
Vol 291-294 ◽  
pp. 2015-2021
Author(s):  
Li Fang Wei ◽  
Min Zhang

In order to carry an economic analysis of micro-grid project represented by photovoltaic power-generation, this paper proposed a cost recovery model for micro-grid project through case studies. Meanwhile, based on how micro-grid participates in market competition, we have designed the framework for gaining profits. Issues like basic profits, reasonable depreciation method and the project’s financial profitability are analyzed in detail.


2016 ◽  
Vol 708 ◽  
pp. 110-117
Author(s):  
Imam Djunaedi ◽  
Haifa Wahyu ◽  
Sugiyatno

The paper presents an architecture and engineering of hydrogen fuel cell electric power generation system based on renewable energy that already installed in Tenjolaya village, Wanassalam sub-district, Lebak - Banten Province. It also discloses some important information as well as some valuable experiences from the pilot plant operation. The renewable electric power generation system combines wind turbine, photovoltaic, hydrogen electrolysis and fuel cell. The basic design of this system is focused on energy storage in the form of hydrogen gas that can be converted back into electricity by using fuel cell units. The engineering development was done to address the issues on limited energy storage in the battery unit which has several drawbacks i.e. short battery lifetime, limited storage capacity and rigorous and continuous maintenance schedule. To enable remote control and monitoring, a web based monitoring system was developed. From the monitoring system the following information are obtained: the amount of electrical power produced by the wind turbine that was intermittent and depends on time that reached 3000 W; similar pattern is observed from the output power of solar PVs and a maximum point of the solar cell power generation was 640 Watt; the time of electricity production by the wind turbine and the solar cell is complementary to each other in every one day cycle. Two valuable experiences have been gained those are: the location near sea shore has a very corrosive air that damages the wind turbine component, and the use of fuel cell requires high investment cost.


Sign in / Sign up

Export Citation Format

Share Document