scholarly journals On soluble skew linear groups over finite-dimensional division algebras

2007 ◽  
Vol 209 (2) ◽  
pp. 301-309 ◽  
Author(s):  
B.A.F. Wehrfritz
1982 ◽  
Vol 47 (4) ◽  
pp. 734-738
Author(s):  
Bruce I. Rose

In this note we show that taking a scalar extension of two elementarily equivalent finite-dimensional algebras over the same field preserves elementary equivalence. The general question of whether or not tensor product preserves elementary equivalence was originally raised in [4]. In [3] Feferman relates an example of Ersov which answers the question negatively. Eklof and Olin [7] also provide a counterexample to the general question in the context of two-sorted structures. Thus the result proved below is a partial positive answer to a general question whose status has been resolved negatively. From the viewpoint of applied model theory it seems desirable to find contexts in which positive statements of preservation can be obtained. Our result does have an application; a corollary to it increases our understanding of what it means for two division algebras to be elementarily equivalent.All algebras are finite-dimensional algebras over fields. All algebras contain an identity element, but are not necessarily associative.Recall that the center of a not necessarily associative algebra A is the set of elements which commute and “associate” with all elements of A. The notion of a scalar extension is an important one in algebra. If A is an algebra over F and G is an extension field of F, then the scalar extension of A by G is the algebra A ⊗F G.


1989 ◽  
Vol 120 (1) ◽  
pp. 90-99 ◽  
Author(s):  
H.H Brungs ◽  
Joachim Gräter

1966 ◽  
Vol 27 (2) ◽  
pp. 531-542 ◽  
Author(s):  
G. Hochschild ◽  
G. D. Mostow

Let G be a complex analytic group, and let A be the representation space of a finite-dimensional complex analytic representation of G. We consider the cohomology for G in A, such as would be obtained in the usual way from the complex of holomorphic cochains for G in A. Actually, we shall use a more conceptual categorical definition, which is equivalent to the explicit one by cochains. In the context of finite-dimensional representation theory, nothing substantial is lost by assuming that G is a linear group. Under this assumption, it is the main purpose of this paper to relate the holomorphic cohomology of G to Lie algebra cohomology, and to the rational cohomology, in the sense of [1], of algebraic hulls of G. This is accomplished by using the known structure theory for complex analytic linear groups in combination with certain easily established results concerning the cohomology of semidirect products. The main results are Theorem 4.1 (whose hypothesis is always satisfied by a complex analytic linear group) and Theorems 5.1 and 5.2. These last two theorems show that the usual abundantly used connections between complex analytic representations of complex analytic groups and rational representations of algebraic groups extend fully to the superstructure of cohomology.


2016 ◽  
Vol 161 (1) ◽  
pp. 143-156
Author(s):  
BRITA E. A. NUCINKIS ◽  
NANSEN PETROSYAN

AbstractBy considering the Bredon analogue of complete cohomology of a group, we show that every group in the class$\cll\clh^{\mathfrak F}{\mathfrak F}$of type Bredon-FP∞admits a finite dimensional model for$E_{\frak F}G$.We also show that abelian-by-infinite cyclic groups admit a 3-dimensional model for the classifying space for the family of virtually nilpotent subgroups. This allows us to prove that for$\mathfrak {F}$, the class of virtually cyclic groups, the class of$\cll\clh^{\mathfrak F}{\mathfrak F}$-groups contains all locally virtually soluble groups and all linear groups over${\mathbb{C}}$of integral characteristic.


1982 ◽  
Vol 34 (3) ◽  
pp. 550-588 ◽  
Author(s):  
Georgia M. Benkart ◽  
Daniel J. Britten ◽  
J. Marshall Osborn

In this paper we classify finite-dimensional flexible division algebras over the real numbers. We show that every such algebra is either (i) commutative and of dimension one or two, (ii) a slight variant of a noncommutative Jordan algebra of degree two, or (iii) an algebra defined by putting a certain product on the 3 × 3 complex skew-Hermitian matrices of trace zero. A precise statement of this result is given at the end of this section after we have developed the necessary background and terminology. In Section 3 we show that, if one also assumes that the algebra is Lie-admissible, then the structure follows rapidly from results in [2] and [3].All algebras in this paper will be assumed to be finite-dimensional. A nonassociative algebra A is called flexible if (xy)x = x(yx) for all x, y ∈ A.


Author(s):  
M. R. DIXON ◽  
L. A. KURDACHENKO ◽  
J. OTAL

1978 ◽  
Vol 12 (2) ◽  
pp. 153-158 ◽  
Author(s):  
S. Green ◽  
D. Handelman ◽  
P. Roberts

2005 ◽  
Vol 2005 (4) ◽  
pp. 571-577 ◽  
Author(s):  
Karim Mounirh

This paper deals with the structure of nicely semiramified valued division algebras. We prove that any defectless finite-dimensional central division algebra over a Henselian fieldEwith an inertial maximal subfield and a totally ramified maximal subfield (not necessarily of radical type) (resp., split by inertial and totally ramified field extensions ofE) is nicely semiramified.


Sign in / Sign up

Export Citation Format

Share Document