Correlation analysis of physicochemical properties with anti-inflammatory activity of Andrographis paniculata (Burm.f.) Nees based on HPLC-DAD, colorimeter and multivariate statistics: A comprehensive quality evaluation strategy

Author(s):  
Meng Xia ◽  
Yan Guo ◽  
Jia Li ◽  
Han Ma ◽  
Wei Gao ◽  
...  
Nanomaterials ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 709 ◽  
Author(s):  
Blanca Lorenzo-Veiga ◽  
Patricia Diaz-Rodriguez ◽  
Carmen Alvarez-Lorenzo ◽  
Thorsteinn Loftsson ◽  
Hakon Hrafn Sigurdsson

The aim of this study was to design and evaluate novel cyclodextrin (CD)-based aggregate formulations to efficiently deliver nepafenac topically to the eye structure, to treat inflammation and increase nepafenac levels in the posterior segment, thus attenuating the response of inflammatory mediators. The physicochemical properties of nine aggregate formulations containing nepafenac/γ-CD/hydroxypropyl-β (HPβ)-CD complexes as well as their rheological properties, mucoadhesion, ocular irritancy, corneal and scleral permeability, and anti-inflammatory activity were investigated in detail. The results were compared with a commercially available nepafenac suspension, Nevanac® 3 mg/mL. All formulations showed microparticles, neutral pH, and negative zeta potential (–6 to –27 mV). They were non-irritating and nontoxic and showed high permeation through bovine sclera. Formulations containing carboxymethyl cellulose (CMC) showed greater anti-inflammatory activity, even higher than the commercial formulation, Nevanac® 0.3%. The optimized formulations represent an opportunity for topical instillation of drugs to the posterior segment of the eye.


2018 ◽  
Vol 10 (6) ◽  
pp. 268
Author(s):  
Yogesh Pore ◽  
Madhuri Mane ◽  
Vaishnavi Mangrule ◽  
Atul Chopade ◽  
Pankaj Gajare

Objective: The objective of this study was to prepare and characterize etoricoxib (ECB) loaded Soluplus® nanocomposites to improve its physicochemical properties. The effect of polymer and surfactant concentration on particle size, in vitro percentage dissolution efficiency and the anti-inflammatory activity of nanocomposites were also investigated.Methods: The nanocomposites were prepared by using a freeze-drying technique. The analytical evidence for the formulation of lyophilized nanocomposites in solid state were generated and confirmed by differential scanning calorimetry (DSC), fourier transformation infrared spectroscopy (FTIR), x-ray powder diffractometry (XPRD) and scanning electron microscopy (SEM). The in vitro drug release profile of nanocomposites was compared with pure ECB powder.Results: The nanocomposites of ECB were contained in a nano range with particle size and zeta potential of 63.5 nm and 46.5 mv, respectively. The solubility and dissolution of the nanocomposites were significantly (p<0.001) improved as compared to ECB alone, evidenced by decreased log P values (1.90±0.002) of the nanocomposites. The characterization studies revealed the formation of amorphous nanocomposites of ECB with existence of physical interactions between drug and polymer. The anti-inflammatory activity of nanocomposites evaluated by carrageenan-induced rat paw edema model demonstrated nonsignificant (p>0.05) increase in anti-inflammatory activity as compared to pure ECB.Conclusion: From the results, it could be concluded that the formation of ECB nanocomposites with Soluplus® could be an effective and alternative approach to modify the physicochemical properties of ECB.


2020 ◽  
Vol 48 (05) ◽  
pp. 1073-1090 ◽  
Author(s):  
Chih-Chieh Chen ◽  
Chong-Kuei Lii ◽  
Yi-Hsueh Lin ◽  
Pei-Hsin Shie ◽  
Ya-Chen Yang ◽  
...  

Pro-inflammatory cytokines interfere with blood glucose homeostasis, which leads to hyperglycemia. Andrographis paniculata (AP) has been shown to possess anti-inflammatory activity and to reduce blood glucose levels in diabetes. The two major bioactive diterpenoids in AP, andrographolide (AND) and 14-deoxy-11,12-didehydroandrographolide (deAND), have potent anti-inflammatory activity. We studied whether APE (an ethanolic extract of AP), AND, and deAND could improve a high-fat diet (HFD)-induced hyperglycemia in vivo and TNF[Formula: see text]-induced impairment of insulin signaling in vitro. Male C57BL/6JNarl mice were fed a normal diet (ND) or the HFD, and the fatty mice were treated with APE, deAND, or AND for 16 weeks. 3T3-L1 cells were used to study the underlying mechanisms by which APE, deAND, or AND attenuated TNF[Formula: see text]-induced insulin resistance. The HFD significantly induced obesity, hyperglycemia, insulin resistance, and inflammation, whereas APE and deAND significantly ameliorated HFD-induced obesity, hyperglycemia, insulin resistance, and TNF[Formula: see text] production. The HFD significantly impaired insulin signaling by decreasing the protein expression of p-IRS1 tyr632 and p-AKT ser473, as well as the membrane translocation of GLUT4 in response to insulin stimulation in epididymal adipose tissue. HFD-impaired the membrane translocation of GLUT4 was significantly reversed by deAND and APE. In addition, deAND and APE markedly reversed the detrimental effect of TNF[Formula: see text] on the insulin signaling pathway and glucose uptake in 3T3-L1 cells. Despite no significant positive effect on p-AS160, a trend for recovery by deAND and APE was observed. These results suggest that deAND and APE protect against HFD-induced insulin resistance by ameliorating inflammation-driven impairment of insulin sensitivity.


Sign in / Sign up

Export Citation Format

Share Document