Dual-modified starch nanospheres encapsulated with curcumin by self-assembly: Structure, physicochemical properties and anti-inflammatory activity

2021 ◽  
Vol 191 ◽  
pp. 305-314
Author(s):  
Kangkang Zhi ◽  
Huilan Yang ◽  
Zhongguo Shan ◽  
Kerang Huang ◽  
Min Zhang ◽  
...  
Nanomaterials ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 709 ◽  
Author(s):  
Blanca Lorenzo-Veiga ◽  
Patricia Diaz-Rodriguez ◽  
Carmen Alvarez-Lorenzo ◽  
Thorsteinn Loftsson ◽  
Hakon Hrafn Sigurdsson

The aim of this study was to design and evaluate novel cyclodextrin (CD)-based aggregate formulations to efficiently deliver nepafenac topically to the eye structure, to treat inflammation and increase nepafenac levels in the posterior segment, thus attenuating the response of inflammatory mediators. The physicochemical properties of nine aggregate formulations containing nepafenac/γ-CD/hydroxypropyl-β (HPβ)-CD complexes as well as their rheological properties, mucoadhesion, ocular irritancy, corneal and scleral permeability, and anti-inflammatory activity were investigated in detail. The results were compared with a commercially available nepafenac suspension, Nevanac® 3 mg/mL. All formulations showed microparticles, neutral pH, and negative zeta potential (–6 to –27 mV). They were non-irritating and nontoxic and showed high permeation through bovine sclera. Formulations containing carboxymethyl cellulose (CMC) showed greater anti-inflammatory activity, even higher than the commercial formulation, Nevanac® 0.3%. The optimized formulations represent an opportunity for topical instillation of drugs to the posterior segment of the eye.


2018 ◽  
Vol 10 (6) ◽  
pp. 268
Author(s):  
Yogesh Pore ◽  
Madhuri Mane ◽  
Vaishnavi Mangrule ◽  
Atul Chopade ◽  
Pankaj Gajare

Objective: The objective of this study was to prepare and characterize etoricoxib (ECB) loaded Soluplus® nanocomposites to improve its physicochemical properties. The effect of polymer and surfactant concentration on particle size, in vitro percentage dissolution efficiency and the anti-inflammatory activity of nanocomposites were also investigated.Methods: The nanocomposites were prepared by using a freeze-drying technique. The analytical evidence for the formulation of lyophilized nanocomposites in solid state were generated and confirmed by differential scanning calorimetry (DSC), fourier transformation infrared spectroscopy (FTIR), x-ray powder diffractometry (XPRD) and scanning electron microscopy (SEM). The in vitro drug release profile of nanocomposites was compared with pure ECB powder.Results: The nanocomposites of ECB were contained in a nano range with particle size and zeta potential of 63.5 nm and 46.5 mv, respectively. The solubility and dissolution of the nanocomposites were significantly (p<0.001) improved as compared to ECB alone, evidenced by decreased log P values (1.90±0.002) of the nanocomposites. The characterization studies revealed the formation of amorphous nanocomposites of ECB with existence of physical interactions between drug and polymer. The anti-inflammatory activity of nanocomposites evaluated by carrageenan-induced rat paw edema model demonstrated nonsignificant (p>0.05) increase in anti-inflammatory activity as compared to pure ECB.Conclusion: From the results, it could be concluded that the formation of ECB nanocomposites with Soluplus® could be an effective and alternative approach to modify the physicochemical properties of ECB.


RSC Advances ◽  
2021 ◽  
Vol 11 (36) ◽  
pp. 22433-22438
Author(s):  
Mohyeddin Assali ◽  
Ramzi Shawahna ◽  
Raeda Alhawareen ◽  
Haifa Najajreh ◽  
Oraib Rabaya ◽  
...  

Amphiphilic diclofenac prodrugs were successfully synthesized and self-assembled into the nano-micellar structures that have improved the anti-inflammatory activity in vivo.


Planta Medica ◽  
2008 ◽  
Vol 74 (09) ◽  
Author(s):  
DA Uchil ◽  
SK Kamat ◽  
SS Menon ◽  
AM Scindia ◽  
GK Dang ◽  
...  

Planta Medica ◽  
2009 ◽  
Vol 75 (09) ◽  
Author(s):  
DM González Mosquera ◽  
A Kilonda ◽  
S Toppet ◽  
F Compernolle ◽  
W Dehaen ◽  
...  

Planta Medica ◽  
2012 ◽  
Vol 78 (11) ◽  
Author(s):  
J Ofeimun ◽  
B Ayinde ◽  
I Igbe ◽  
MI Choudhary ◽  
I Husain ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document