scholarly journals The neurosteroid allopregnanolone sulfate inhibits Nav1.3 α subunit-containing voltage-gated sodium channels, expressed in Xenopus oocytes

2018 ◽  
Vol 137 (1) ◽  
pp. 93-97 ◽  
Author(s):  
Takafumi Horishita ◽  
Nobuyuki Yanagihara ◽  
Susumu Ueno ◽  
Dan Okura ◽  
Reiko Horishita ◽  
...  
2014 ◽  
Vol 121 (3) ◽  
pp. 620-631 ◽  
Author(s):  
Takafumi Horishita ◽  
Nobuyuki Yanagihara ◽  
Susumu Ueno ◽  
Yuka Sudo ◽  
Yasuhito Uezono ◽  
...  

Abstract Background: The neurosteroids allopregnanolone and pregnanolone are potent positive modulators of γ-aminobutyric acid type A receptors. Antinociceptive effects of allopregnanolone have attracted much attention because recent reports have indicated the potential of allopregnanolone as a therapeutic agent for refractory pain. However, the analgesic mechanisms of allopregnanolone are still unclear. Voltage-gated sodium channels (Nav) are thought to play important roles in inflammatory and neuropathic pain, but there have been few investigations on the effects of allopregnanolone on sodium channels. Methods: Using voltage-clamp techniques, the effects of allopregnanolone sulfate (APAS) and pregnanolone sulfate (PAS) on sodium current were examined in Xenopus oocytes expressing Nav1.2, Nav1.6, Nav1.7, and Nav1.8 α subunits. Results: APAS suppressed sodium currents of Nav1.2, Nav1.6, and Nav1.7 at a holding potential causing half-maximal current in a concentration-dependent manner, whereas it markedly enhanced sodium current of Nav1.8 at a holding potential causing maximal current. Half-maximal inhibitory concentration values for Nav1.2, Nav1.6, and Nav1.7 were 12 ± 4 (n = 6), 41 ± 2 (n = 7), and 131 ± 15 (n = 5) μmol/l (mean ± SEM), respectively. The effects of PAS were lower than those of APAS. From gating analysis, two compounds increased inactivation of all α subunits, while they showed different actions on activation of each α subunit. Moreover, two compounds showed a use-dependent block on Nav1.2, Nav1.6, and Nav1.7. Conclusion: APAS and PAS have diverse effects on sodium currents in oocytes expressing four α subunits. APAS inhibited the sodium currents of Nav1.2 most strongly.


2020 ◽  
Vol 142 (4) ◽  
pp. 140-147
Author(s):  
Takafumi Horishita ◽  
Yuichi Ogata ◽  
Reiko Horishita ◽  
Ryo Fukui ◽  
Kuniaki Moriwaki ◽  
...  

2014 ◽  
Vol 118 (3) ◽  
pp. 554-562 ◽  
Author(s):  
Dan Okura ◽  
Takafumi Horishita ◽  
Susumu Ueno ◽  
Nobuyuki Yanagihara ◽  
Yuka Sudo ◽  
...  

2015 ◽  
Vol 62 (4) ◽  
pp. 587-592
Author(s):  
Henry Humberto León Ariza ◽  
Natalia Valenzuela Faccini ◽  
Ariana Carolina Rojas Ortega ◽  
Daniel Alfonso Botero Rosas

<p>Voltage-gated sodium channels constitute a group of membrane<br />proteins widely distributed thought the body. In the heart, there<br />are at least six different isoforms, being the Nav1.5 the most<br />abundant. The channel is composed of an α subunit that is formed<br />by four domains of six segments each, and four much smaller β<br />subunits that provide stability and integrate other channels into<br />the α subunit. The function of the Nav1.5 channel is modulated<br />by intracellular cytoskeleton proteins, extracellular proteins,<br />calcium concentration, free radicals, and medications, among<br />other things. The study of the channel and its alterations has<br />grown thanks to its association with pathogenic conditions such<br />as Long QT syndrome, Brugada syndrome, atrial fibrillation,<br />arrhythmogenic ventricular dysplasia and complications during<br />ischemic processes.</p>


Toxins ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 513 ◽  
Author(s):  
Keiichi Konoki ◽  
Daniel G. Baden ◽  
Todd Scheuer ◽  
William A. Catterall

Brevetoxins are produced by dinoflagellates such as Karenia brevis in warm-water red tides and cause neurotoxic shellfish poisoning. They bind to voltage-gated sodium channels at neurotoxin receptor 5, making the channels more active by shifting the voltage-dependence of activation to more negative potentials and by slowing the inactivation process. Previous work using photoaffinity labeling identified binding to the IS6 and IVS5 transmembrane segments of the channel α subunit. We used alanine-scanning mutagenesis to identify molecular determinants for brevetoxin binding in these regions as well as adjacent regions IVS5-SS1 and IVS6. Most of the mutant channels containing single alanine substitutions expressed functional protein in tsA-201 cells and bound to the radioligand [42-3H]-PbTx3. Binding affinity for the great majority of mutant channels was indistinguishable from wild type. However, transmembrane segments IS6, IVS5 and IVS6 each contained 2 to 4 amino acid positions where alanine substitution resulted in a 2–3-fold reduction in brevetoxin affinity, and additional mutations caused a similar increase in brevetoxin affinity. These findings are consistent with a model in which brevetoxin binds to a protein cleft comprising transmembrane segments IS6, IVS5 and IVS6 and makes multiple distributed interactions with these α helices. Determination of brevetoxin affinity for Nav1.2, Nav1.4 and Nav1.5 channels showed that Nav1.5 channels had a characteristic 5-fold reduction in affinity for brevetoxin relative to the other channel isoforms, suggesting the interaction with sodium channels is specific despite the distributed binding determinants.


2012 ◽  
Vol 120 (1) ◽  
pp. 54-58 ◽  
Author(s):  
Takafumi Horishita ◽  
Susumu Ueno ◽  
Nobuyuki Yanagihara ◽  
Yuka Sudo ◽  
Yasuhito Uezono ◽  
...  

2019 ◽  
Vol 2019 (4) ◽  
Author(s):  
William A. Catterall ◽  
Alan L. Goldin ◽  
Stephen G. Waxman

Sodium channels are voltage-gated sodium-selective ion channels present in the membrane of most excitable cells. Sodium channels comprise of one pore-forming α subunit, which may be associated with either one or two β subunits [176]. α-Subunits consist of four homologous domains (I–IV), each containing six transmembrane segments (S1–S6) and a pore-forming loop. The positively charged fourth transmembrane segment (S4) acts as a voltage sensor and is involved in channel gating. The crystal structure of the bacterial NavAb channel has revealed a number of novel structural features compared to earlier potassium channel structures including a short selectivity filter with ion selectivity determined by interactions with glutamate side chains [268]. Interestingly, the pore region is penetrated by fatty acyl chains that extend into the central cavity which may allow the entry of small, hydrophobic pore-blocking drugs [268]. Auxiliary β1, β2, β3 and β4 subunits consist of a large extracellular N-terminal domain, a single transmembrane segment and a shorter cytoplasmic domain.The nomenclature for sodium channels was proposed by Goldin et al., (2000) [143] and approved by the NC-IUPHAR Subcommittee on sodium channels (Catterall et al., 2005, [51]).


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
William A. Catterall ◽  
Alan L. Goldin ◽  
Stephen G. Waxman

Sodium channels are voltage-gated sodium-selective ion channels present in the membrane of most excitable cells. Sodium channels comprise of one pore-forming α subunit, which may be associated with either one or two β subunits [177]. α-Subunits consist of four homologous domains (I-IV), each containing six transmembrane segments (S1-S6) and a pore-forming loop. The positively charged fourth transmembrane segment (S4) acts as a voltage sensor and is involved in channel gating. The crystal structure of the bacterial NavAb channel has revealed a number of novel structural features compared to earlier potassium channel structures including a short selectivity filter with ion selectivity determined by interactions with glutamate side chains [274]. Interestingly, the pore region is penetrated by fatty acyl chains that extend into the central cavity which may allow the entry of small, hydrophobic pore-blocking drugs [274]. Auxiliary β1, β2, β3 and β4 subunits consist of a large extracellular N-terminal domain, a single transmembrane segment and a shorter cytoplasmic domain.The nomenclature for sodium channels was proposed by Goldin et al., (2000) [144] and approved by the NC-IUPHAR Subcommittee on sodium channels (Catterall et al., 2005, [52]).


Sign in / Sign up

Export Citation Format

Share Document