High performance rare earth oxides LnOx (Ln=Sc, Y, La, Ce, Pr and Nd) modified Pt/C electrocatalysts for methanol electrooxidation

2006 ◽  
Vol 162 (2) ◽  
pp. 1067-1072 ◽  
Author(s):  
Zhicheng Tang ◽  
Gongxuan Lu
Nanoscale ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 6832-6843 ◽  
Author(s):  
Jun Xu ◽  
Qi Zhang ◽  
Xin Liang ◽  
Jian Yan ◽  
Jiaqin Liu ◽  
...  

Rare earth oxides, for example scandium oxide, may open up a new prospect towards the development of advanced Li–S batteries and other energy storage systems.


2017 ◽  
Vol 46 (2) ◽  
pp. 263-266
Author(s):  
Li Zhang ◽  
Xueguang Wang ◽  
Chenju Chen ◽  
Xiujing Zou ◽  
Weizhong Ding ◽  
...  

2015 ◽  
Vol 30 (3) ◽  
pp. 267
Author(s):  
HUANG Lin-Yun ◽  
LI Chen-Hui ◽  
KE Wen-Ming ◽  
SHI Yu-Sheng ◽  
HE Zhi-Yong ◽  
...  

2020 ◽  
Vol 05 ◽  
Author(s):  
Silas Santos ◽  
Orlando Rodrigues ◽  
Letícia Campos

Background: Innovation mission in materials science requires new approaches to form functional materials, wherein the concept of its formation begins in nano/micro scale. Rare earth oxides with general form (RE2O3; RE from La to Lu, including Sc and Y) exhibit particular proprieties, being used in a vast field of applications with high technological content since agriculture to astronomy. Despite of their applicability, there is a lack of studies on surface chemistry of rare earth oxides. Zeta potential determination provides key parameters to form smart materials by controlling interparticle forces, as well as their evolution during processing. This paper reports a study on zeta potential with emphasis for rare earth oxide nanoparticles. A brief overview on rare earths, as well as zeta potential, including sample preparation, measurement parameters, and the most common mistakes during this evaluation are reported. Methods: A brief overview on rare earths, including zeta potential, and interparticle forces are presented. A practical study on zeta potential of rare earth oxides - RE2O3 (RE as Y, Dy, Tm, Eu, and Ce) in aqueous media is reported. Moreover, sample preparation, measurement parameters, and common mistakes during this evaluation are discussed. Results: Potential zeta values depend on particle characteristics such as size, shape, density, and surface area. Besides, preparation of samples which involves electrolyte concentration and time for homogenization of suspensions are extremely valuable to get suitable results. Conclusion: Zeta potential evaluation provides key parameters to produce smart materials seeing that interparticle forces can be controlled. Even though zeta potential characterization is mature, investigations on rare earth oxides are very scarce. Therefore, this innovative paper is a valuable contribution on this field.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Anna Galler ◽  
Semih Ener ◽  
Fernando Maccari ◽  
Imants Dirba ◽  
Konstantin P. Skokov ◽  
...  

AbstractCerium-based intermetallics are currently attracting much interest as a possible alternative to existing high-performance magnets containing scarce heavy rare-earth elements. However, the intrinsic magnetic properties of Ce in these systems are poorly understood due to the difficulty of a quantitative description of the Kondo effect, a many-body phenomenon where conduction electrons screen out the Ce-4f moment. Here, we show that the Ce-4f shell in Ce–Fe intermetallics is partially Kondo screened. The Kondo scale is dramatically enhanced by nitrogen interstitials suppressing the Ce-4f contribution to the magnetic anisotropy, in striking contrast to the effect of nitrogenation in isostructural intermetallics containing other rare-earth elements. We determine the full temperature dependence of the Ce-4f single-ion anisotropy and show that even unscreened Ce-4f moments contribute little to the room-temperature intrinsic magnetic hardness. Our study thus establishes fundamental constraints on the potential of cerium-based permanent magnet intermetallics.


Sign in / Sign up

Export Citation Format

Share Document