Effect of solvents in liquid electrolyte on the photovoltaic performance of dye-sensitized solar cells

2007 ◽  
Vol 173 (1) ◽  
pp. 585-591 ◽  
Author(s):  
Jihuai Wu ◽  
Zhang Lan ◽  
Jianming Lin ◽  
Miaoliang Huang ◽  
Pinjiang Li
2021 ◽  
Vol 21 (1) ◽  
pp. 35
Author(s):  
Putri Nur Anggraini ◽  
Erlyta Septa Rosa ◽  
Natalita Maulani Nursam ◽  
Rico Fernado Sinaga ◽  
Shobih Shobih

Dye-sensitized solar cells (DSSC) has been well known as a highly competitive photovoltaic technology owing to its interesting characteristics, such as, low-cost, simple, and convenient to modify both chemically and physically. One way to reduce the production cost of DSSCs is to conduct a structural modification in the form of a monolithic structure by using a single conductive substrate to accommodate both photoelectrode and counter electrode. However, the photovoltaic performance of monolithic DSSCs is typically still lacking compared to its conventional DSSCs counterparts that uses sandwich structure. One of the crucial factors that determine the photovoltaic performance of a monolithic DSSC is its electrolyte. In this work, the performance of monolithic DSSCs were studied through modifications of the electrolyte component. Two types of commercial liquid electrolytes that have different chemical properties were used and combined into various compositions, and the resulting DSSCs performances were compared. The stability of the monolithic cells was also monitored by measuring the cells repeatedly under the same condition. The result showed that during the first measurement the highest performance with a power conversion efficiency of 1.69% was achieved by the cell with a higher viscosity electrolyte. Meanwhile, the most stable performance is shown by the cell containing lower viscosity electrolyte, which achieved an efficiency of 0.66% that measured on day 35. 


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
W. M. N. M. B. Wanninayake ◽  
K. Premaratne ◽  
R. M. G. R. Rajapakse

Although liquid electrolyte based dye-sensitized solar cells (DSCs) have shown higher photovoltaic performance in their class, they still suffer from some practical limitations such as solvent evaporation, leakage, and sealing imperfections. These problems can be circumvented to a certain extent by replacing the liquid electrolytes with quasi-solid-state electrolytes. Even though SnO2shows high election mobility when compared to the semiconductor material commonly used in DSCs, the cell performance of SnO2-based DSCs is considerably low due to high electron recombination. This recombination effect can be reduced through the use of ultrathin coating layer of ZnO on SnO2nanoparticles surface. ZnO-based DSCs also showed lower performance due to its amphoteric nature which help dissolve in slightly acidic dye solution. In this study, the effect of the composite SnO2/ZnO system was investigated. SnO2/ZnO composite DSCs showed 100% and 38% increase of efficiency compared to the pure SnO2-based and ZnO-based devices, respectively, with the gel electrolyte consisting of LiI salt.


2020 ◽  
Vol 44 (30) ◽  
pp. 12909-12915
Author(s):  
Yi-Qiao Yan ◽  
Yi-Zhou Zhu ◽  
Pan-Pan Dai ◽  
Jun Han ◽  
Mao Yan ◽  
...  

Effects of hetero-donors on the photovoltaic performance of tetraphenylethylene-based organic dyes were systematically investigated.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2150
Author(s):  
Ji-Hye Kim ◽  
Sung-Yoon Park ◽  
Dong-Hyuk Lim ◽  
So-Young Lim ◽  
Jonghoon Choi ◽  
...  

Organic solvents used for electrolytes of dye-sensitized solar cells (DSSCs) are generally not only toxic and explosive but also prone to leakage due to volatility and low surface tension. The representative dyes of DSSCs are ruthenium-complex molecules, which are expensive and require a complicated synthesis process. In this paper, the eco-friendly DSSCs were presented based on water-based electrolytes and a commercially available organic dye. The effect of aging time after the device fabrication and the electrolyte composition on the photovoltaic performance of the eco-friendly DSSCs were investigated. Plasma treatment of TiO2 was adopted to improve the dye adsorption as well as the wettability of the water-based electrolytes on TiO2. It turned out that the plasma treatment was an effective way of improving the photovoltaic performance of the eco-friendly DSSCs by increasing the efficiency by 3.4 times. For more eco-friendly DSSCs, the organic-synthetic dye was replaced by chlorophyll extracted from spinach. With the plasma treatment, the efficiency of the eco-friendly DSSCs based on water-electrolytes and chlorophyll was comparable to those of the previously reported chlorophyll-based DSSCs with non-aqueous electrolytes.


Molecules ◽  
2020 ◽  
Vol 25 (1) ◽  
pp. 198 ◽  
Author(s):  
Michèle Chevrier ◽  
Alberto Fattori ◽  
Laurent Lasser ◽  
Clément Kotras ◽  
Clémence Rose ◽  
...  

Chlorophyll a derivatives were integrated in “all solid-state” dye sensitized solar cells (DSSCs) with a mesoporous TiO2 electrode and 2′,2′,7,7′-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9′-spirobifluorene as the hole-transport material. Despite modest power conversion efficiencies (PCEs) between 0.26% and 0.55% achieved for these chlorin dyes, a systematic investigation was carried out in order to elucidate their main limitations. To provide a comprehensive understanding of the parameters (structure, nature of the anchoring group, adsorption …) and their relationship with the PCEs, density functional theory (DFT) calculations, optical and photovoltaic studies and electron paramagnetic resonance analysis exploiting the 4-carboxy-TEMPO spin probe were combined. The recombination kinetics, the frontier molecular orbitals of these DSSCs and the adsorption efficiency onto the TiO2 surface were found to be the key parameters that govern their photovoltaic response.


RSC Advances ◽  
2015 ◽  
Vol 5 (43) ◽  
pp. 33855-33862 ◽  
Author(s):  
Molang Cai ◽  
Xu Pan ◽  
Weiqing Liu ◽  
John Bell ◽  
Songyuan Dai

DMImBS is used as a novel additive in dye-sensitized solar cells to restrain the electron recombination and intercalation of Li+.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Carolynne Zie Wei Sie ◽  
Zainab Ngaini

Sensitization of heavy metal free organic dyes onto TiO2 thin films has gained much attention in dye sensitized solar cells (DSSCs). A series of new kojic acid based organic dyes KA1–4 were synthesized via nucleophilic substitution of azobenzene bearing different vinyl chains A1–4 with kojyl chloride 4. Azo dyes KA1–4 were characterized for photophysical properties employing absorption spectrometry and photovoltaic characteristic in TiO2 thin film. The presence of vinyl chain in A1–4 improved the photovoltaic performance from 0.20 to 0.60%. The introduction of kojic acid obtained from sago waste further increases the efficiency to 0.82–1.54%. Based on photovoltaic performance, KA4 achieved the highest solar to electrical energy conversion efficiency (η = 1.54%) in the series.


Sign in / Sign up

Export Citation Format

Share Document