Model-based distinction and quantification of capacity loss and rate capability fade in Li-ion batteries

2010 ◽  
Vol 195 (22) ◽  
pp. 7634-7638 ◽  
Author(s):  
Alexander P. Schmidt ◽  
Matthias Bitzer ◽  
Árpád W. Imre ◽  
Lino Guzzella
2021 ◽  
Vol 35 (5) ◽  
pp. 4570-4576
Author(s):  
Najeeb ur Rehman Lashari ◽  
Mingshu Zhao ◽  
Qingyang Zheng ◽  
Xinhai He ◽  
Irfan Ahmed ◽  
...  

Author(s):  
Chenbo Zhu ◽  
Chenghao Fan ◽  
Emiliano Cortes ◽  
Wei Xie

We report on the mechanism of rhodamine B (RhB) acting as an electrolyte additive in Li/graphite cells. We show that cycle performance and rate capability of graphite is enhanced in...


2021 ◽  
Vol 9 (11) ◽  
pp. 7018-7024
Author(s):  
Takahiro Yoshinari ◽  
Datong Zhang ◽  
Kentaro Yamamoto ◽  
Yuya Kitaguchi ◽  
Aika Ochi ◽  
...  

A Cu–Au cathode material for all-solid-state fluoride-ion batteries with high rate-capability was designed as new concepts for electrochemical energy storage to handle the physicochemical energy density limit that Li-ion batteries are approaching.


2016 ◽  
Vol 4 (47) ◽  
pp. 18416-18425 ◽  
Author(s):  
Fu-Da Yu ◽  
Lan-Fang Que ◽  
Zhen-Bo Wang ◽  
Yin Zhang ◽  
Yuan Xue ◽  
...  

We report an effective approach to fabricate layered-spinel capped nanotube assembled 3D Li-rich hierarchitectures as a cathode material for Li-ion batteries. The resultant material exhibits a reduced first-cycle irreversible capacity loss, rapid Li-ion diffusion rate and excellent cycle stability.


2021 ◽  
Vol 894 ◽  
pp. 61-66
Author(s):  
Rui Zhi Dong

Due to the development of various mobile electronic devices, such as electric vehicles, rechargeable ion batteries are becoming more and more important. However, the current commercial lithium-ion batteries have obvious defects, including poor safety from Li dendrite and flammable electrolyte, quick capacity loss and low charging and discharging rate. It is very important to find a better two-dimensional material as the anode of the battery to recover the disadvantages. In this paper, first principles calculations are used to explore the performances of VS2 bilayer and VS2 / graphene heterostructure as the anodes of Li ion batteries. Based on the calculation of the valences, binding energy, intercalation voltage, charge transfer and diffusion barrier of Li, it is found that the latter can be used as a better anode material from the perspective of insertion voltage and binding energy. At the same time, the former one is better in terms of diffusion barrier. Our study provides a comprehensive understanding on VS2 based 2D anodes.


2021 ◽  
Author(s):  
SHUVAM ROUTRAY ◽  
Kranthi Nidubrolu ◽  
Abhisha Chauhan ◽  
Chinmay Ashok Kirtane ◽  
Lohit Dhamija ◽  
...  

Author(s):  
Haichang Zhang ◽  
Rui Zhang ◽  
Xingjiang Liu ◽  
Fei Ding ◽  
Chunsheng Shi ◽  
...  

High cost, complex synthesis routes and low yield are pressing challenges hindering the practical application of organic battery materials. Herein, copper(II) phthalocyanine (CuPc), one of the most frequently used blue...


Author(s):  
Mohammed Rabah ◽  
Eero Immonen ◽  
Sajad Shahsavari ◽  
Mohammad-Hashem Haghbayan ◽  
Kirill Murashko ◽  
...  

Understanding battery capacity degradation is instrumental for designing modern electric vehicles. In this paper, a Semi-Empirical Model for predicting the Capacity Loss of Lithium-ion batteries during Cycling and Calendar Aging is developed. In order to redict the Capacity Loss with a high accuracy, battery operation data from different test conditions and different Lithium-ion batteries chemistries were obtained from literature for parameter optimization (fitting). The obtained models were then compared to experimental data for validation. Our results show that the average error between the estimated Capacity Loss and measured Capacity Loss is less than 1.5% during Cycling Aging, and less than 2% during Calendar Aging. An electric mining dumper, with simulated duty cycle data, is considered as an application example.


2003 ◽  
Vol 71 (12) ◽  
pp. 1126-1128 ◽  
Author(s):  
Shigeki OHARA ◽  
Junji SUZUKI ◽  
Kyoichi SERINE ◽  
Tsutomu TAKAMURA

Sign in / Sign up

Export Citation Format

Share Document