Liquid water quantification in the cathode side gas channels of a proton exchange membrane fuel cell through two-phase flow visualization

2014 ◽  
Vol 247 ◽  
pp. 9-19 ◽  
Author(s):  
Rupak Banerjee ◽  
Satish G. Kandlikar
1999 ◽  
Author(s):  
C. Y. Wang ◽  
Z. H. Wang ◽  
Y. Pan

Abstract Proton exchange membrane (PEM) fuel cells have emerged, in the last decade, as a viable technology for power generation and energy conversion. Fuel cell (FC) engines for vehicular applications possess many attributes such as high fuel efficiency, low emission, quiet and low temperature operation, and modularity. An important phenomenon limiting fuel cell performance is the two-phase flow and transport of fuel and oxidant from flow channels to reaction sites. In this paper a mathematical model is presented to study the two-phase flow dynamics, multi-component transport and electrochemical kinetics in the air cathode, the most important component of the hydrogen PEM fuel cell. A major feature of the present model is that it unifies single- and two-phase analyses for low and high current densities, respectively, and it is capable of predicting the threshold current density corresponding to the onset of liquid water formation in the air cathode. A numerical study based on the finite volume method is then undertaken to calculate the detailed distributions of local current density, oxygen concentration, water vapor concentration and liquid water saturation as well as their effects on the cell polarization curve. The simulated polarization curve and predicted threshold current density corresponding to the onset of liquid water formation for a single-channel, 5cm2 fuel cell compare favorably with experimental results. Quantitative comparisons with experiments presently being conducted at our laboratory will be reported in a forthcoming paper.


Author(s):  
John M. Stockie

The porous electrodes in a proton exchange membrane fuel cell are characterized by multi-phase flow, involving liquid water and multispecies gases, that are undergoing both condensation and catalyzed reactions. Careful management of liquid water and heat in the fuel cell system is essential for optimizing performance. The primary focus of this study is thus on condensation and water transport, neither of which have yet been studied in as much detail as other aspects of fuel cell dynamics. We develop a two-dimensional model for multi-phase flow in a porous medium that captures the fundamental transport processes going on in the electrodes. The governing equations are discretized using a finite volume approach, and numerical simulations are performed in order to determine the effect of changing operating conditions on fuel cell performance.


Author(s):  
A. S. Bansode ◽  
T. Sundararajan ◽  
Sarit K. Das

The presence of liquid water at the cathode of proton exchange membrane fuel cell hinders the reactant supply to the electrode and is known as electrode flooding. The flooding at the cathode due to the presence of two-phase flow of water is one of the major performance limiting conditions. A pseudo-two-dimensional analytical model is developed to predict the inception of two-phase flow along the length of the cathode channel. The diffusion of the water is considered to take place only across the gas diffusion layer (GDL). The current density corresponding to the inception of two-phase flow, called the threshold current density, is found to be a function of the channel length and height, GDL thickness, velocity, and relative humidity of the air at the inlet and cell temperature. Thus, for given design and operating conditions, the analytical model is capable of predicting the inception of two-phase flow, and therefore a flooding condition can be avoided in the first place.


2014 ◽  
Vol 39 (12) ◽  
pp. 6620-6636 ◽  
Author(s):  
Satish G. Kandlikar ◽  
Evan J. See ◽  
Mustafa Koz ◽  
Preethi Gopalan ◽  
Rupak Banerjee

2015 ◽  
Vol 38 (7) ◽  
pp. 1229-1234 ◽  
Author(s):  
Selene M. A. Guelli Ulson de Souza ◽  
Erasmo Mancusi ◽  
Éliton Fontana ◽  
Antônio Augusto Ulson de Souza

Sign in / Sign up

Export Citation Format

Share Document