Two-Phase Transport in Proton Exchange Membrane Fuel Cells

1999 ◽  
Author(s):  
C. Y. Wang ◽  
Z. H. Wang ◽  
Y. Pan

Abstract Proton exchange membrane (PEM) fuel cells have emerged, in the last decade, as a viable technology for power generation and energy conversion. Fuel cell (FC) engines for vehicular applications possess many attributes such as high fuel efficiency, low emission, quiet and low temperature operation, and modularity. An important phenomenon limiting fuel cell performance is the two-phase flow and transport of fuel and oxidant from flow channels to reaction sites. In this paper a mathematical model is presented to study the two-phase flow dynamics, multi-component transport and electrochemical kinetics in the air cathode, the most important component of the hydrogen PEM fuel cell. A major feature of the present model is that it unifies single- and two-phase analyses for low and high current densities, respectively, and it is capable of predicting the threshold current density corresponding to the onset of liquid water formation in the air cathode. A numerical study based on the finite volume method is then undertaken to calculate the detailed distributions of local current density, oxygen concentration, water vapor concentration and liquid water saturation as well as their effects on the cell polarization curve. The simulated polarization curve and predicted threshold current density corresponding to the onset of liquid water formation for a single-channel, 5cm2 fuel cell compare favorably with experimental results. Quantitative comparisons with experiments presently being conducted at our laboratory will be reported in a forthcoming paper.

Author(s):  
A. S. Bansode ◽  
T. Sundararajan ◽  
Sarit K. Das

The presence of liquid water at the cathode of proton exchange membrane fuel cell hinders the reactant supply to the electrode and is known as electrode flooding. The flooding at the cathode due to the presence of two-phase flow of water is one of the major performance limiting conditions. A pseudo-two-dimensional analytical model is developed to predict the inception of two-phase flow along the length of the cathode channel. The diffusion of the water is considered to take place only across the gas diffusion layer (GDL). The current density corresponding to the inception of two-phase flow, called the threshold current density, is found to be a function of the channel length and height, GDL thickness, velocity, and relative humidity of the air at the inlet and cell temperature. Thus, for given design and operating conditions, the analytical model is capable of predicting the inception of two-phase flow, and therefore a flooding condition can be avoided in the first place.


Author(s):  
X. Liu ◽  
J. Lin ◽  
K. M. McConnaghy ◽  
T. A. Trabold ◽  
J. J. Gagliardo ◽  
...  

Management of liquid water formed by the electrochemical reaction has received considerable attention and is considered a key factor in proton exchange membrane fuel cell (PEMFC) performance and durability. For practical stack applications, an aspect of the water management problem that is often overlooked is the transport of liquid water at the transition between the ends of the bipolar plate channels and the manifolds, where excess reactant flows from all the individual cells are combined and directed to the stack exhaust. In the bipolar plate exit region, gas-phase momentum can be very low, especially on the anode, and thus there is little driving force to remove liquid water. This study seeks to first quantify the characteristics of channel-to-manifold water transport by analysis of in-situ neutron radiography images, and correlation of the volumes of liquid water in the active and non-active regions to the relevant fuel cell operating conditions: temperature, pressure, relative humidity, current density and stoichiometric ratio. This analysis is complimented by new ex-situ experiments that directly control the flow of channel-level water and quantify the attendant increase in two-phase pressure drop in the non-active fuel cell region. The ex-situ apparatus has the additional feature of a simultaneous cross-flow channel at the exit plane of the bipolar plate, which enables simulation of two-phase flow dynamics of a fuel cell positioned anywhere in a stack, from zero cross-flow at the capped end of the stack to maximum cross-flow at the gas connected end of the stack.


Author(s):  
N. Akhtar ◽  
P. J. A. M. Kerkhof

The role of gas diffusion media with differently structured properties have been examined with emphasis on the liquid water saturation within the cathode of a proton exchange membrane fuel cell (PEMFC). The cathode electrode consists of a gas diffusion layer (GDL), a micro-porous layer and a catalyst layer (CL). The liquid water saturation profiles have been calculated for varying structural and physical properties, i.e., porosity, permeability, thickness and contact angle for each of these layers. It has been observed that each layer has its own role in determining the liquid water saturation within the CL. Among all the layers, the GDL is the most influential layer that governs the transport phenomena within the PEMFC cathode. Besides, the thickness of the CL also affects the liquid water saturation and it should be carefully controlled.


Author(s):  
Utku Gulan ◽  
Hasmet Turkoglu ◽  
Irfan Ar

In this study, the fluid flow and cell performance in cathode side of a proton exchange membrane (PEM) fuel cell were numerically analyzed. The problem domain consists of cathode gas channel, cathode gas diffusion layer, and cathode catalyst layer. The equations governing the motion of air, concentration of oxygen, and electrochemical reactions were numerically solved. A computer program was developed based on control volume method and SIMPLE algorithm. The mathematical model and program developed were tested by comparing the results of numerical simulations with the results from literature. Simulations were performed for different values of inlet Reynolds number and inlet oxygen mole fraction at different operation temperatures. Using the results of these simulations, the effects of these parameters on the flow, oxygen concentration distribution, current density and power density were analyzed. The simulations showed that the oxygen concentration in the catalyst layer increases with increasing Reynolds number and hence the current density and power density of the PEM fuel cell also increases. Analysis of the data obtained from simulations also shows that current density and power density of the PEM fuel cell increases with increasing operation temperature. It is also observed that increasing the inlet oxygen mole fraction increases the current density and power density.


Sign in / Sign up

Export Citation Format

Share Document