Heat Transfer, Volume 7
Latest Publications


TOTAL DOCUMENTS

62
(FIVE YEARS 0)

H-INDEX

7
(FIVE YEARS 0)

Published By ASMEDC

079183638x

Author(s):  
Qingjun Cai ◽  
Chung-Lung Chen

For a long time, how to utilize waste heat to generate electricity has been an interesting and challenging field for energy scientists. This paper presents a new method, ferrofluid power generator (FPG), which takes advantage of waste heat or solar energy to generate electricity in a multiple heating and cooling tube with alternate ferrofluid slug and vapor bubble structures. Based on this method, a new device, a thermomagnetic engine (TME) composed of a straight vacuum tube, a current induced coil, and magnet & ferrofluid slugs (MFS), was designed. Experimental results show that the expanding vapor bubbles push MFSs to generate drastic and continuous oscillating movements under the effect of heat. The pulse voltage signals from the induced coil demonstrate that the TME has a practical structure, potentially higher power generating capacity, and a stable operation.


Author(s):  
Fangming Jiang ◽  
Dengying Liu ◽  
Jim S.-J. Chen ◽  
Richard S. Cohen

A novel experimental method was developed to measure the rapid transient temperature variations (heating rate > 107 K/s) of porous samples heated by high surface heat fluxes. With a thin film (0.1 μm thick) resistance thermometer of platinum as the temperature sensor and a super-high speed digital oscilloscope (up to 100 MHz) as the data recorder, rapid transient temperature variation in a porous material heated by a microsecond laser pulse of high power density is measured. Experimental results indicate that for high heat transfer cases (q′ > 109 W/m2) with short durations (5 – 20 μs) of heating, non-Fourier heat conduction behaviors appear. The non-Fourier hyperbolic heat conduction model and the traditional Fourier parabolic model are employed to simulate this thermal case respectively and the FDM is used to perform the numerical analysis. The hyperbolic model predicts thermal wave behavior in qualitative agreement with the experimental data.


Author(s):  
Johnny S. Issa ◽  
Alfonso Ortega

An experimental investigation was conducted to explore the flow behavior, pressure drop, and heat transfer due to free air jet impingement on square in-line pin fin heat sinks (PFHS) mounted on a plane horizontal surface. A parametrically consistent set of aluminum heat sinks with fixed base dimension of 25 × 25 mm was used, with pin heights varying between 12.5 mm and 22.5 mm, and fin thickness between 1.5 mm and 2.5 mm. A 6:1 contracting nozzle having a square outlet cross sectional area of 25 × 25 mm was used to blow air at ambient temperature on the top of the heat sinks with velocities varying from 2 to 20 m/s. The ratio of the gap between the jet exit and the pin tips to the pin height, the so-called tip clearance ratio, was varied from 0 (no tip clearance) to 1. The stagnation pressure recovered at the center of the heat sink was higher for tall pins than short pins. The pressure loss coefficient showed a little dependence on Re, increased with increasing pin density, and pin diameter, and decreased with increasing pin height and clearance ratio. The overall base-to-ambient thermal resistance decreased with increasing Re number, pin density and pin diameter. Surprisingly, the dependence of the thermal resistance on the pin height and clearance ratio was shown to be mild at low Re, and to vanish at high Re number.


Author(s):  
Richard D. Gould ◽  
Willard B. Jackson ◽  
James C. Mulligan

Use of microencapsulated phase change material (microPCM) in a single phase carrier of fluid for enhanced cooling has been demonstrated by many researchers for the case of laminar flow. However, very little is known about the behavior of microPCM fluids for turbulent flows. Here we consider the flow of octacosane microPCMs in a 50/50 by volume ethylene glycol/water carrier fluid. This high temperature microPCM fluid, with Tmelt = 60°C, has a much lower viscosity than room temperature microPCM fluids. Room temperature microPCMs in 50/50 by weight ethylene glycol/water carrier fluid generally operate at Reynolds numbers much below the critical value due to their large viscosity and the unreasonably large pumping power required to produce turbulent flow. At 60°C, however, the flow can become transitional and perhaps fully turbulent with moderate pressure rise pumps. This paper presents the performance of an octacosane based microPCM fluid operating in the transitional region at Reynolds numbers up to 2900. Transitional flow convective heat transfer coefficients are shown to be as much as 50% higher than laminar flow values. In addition, surface temperatures are reduced with increasing Reynolds number.


Author(s):  
A. V. Kuznetsov ◽  
A. A. Avramenko

In this paper, a model of bioconvection in a suspension of gyrotactic motile microorganisms in a fluid saturated porous medium is suggested. The microorganisms considered in this paper are heavier than water and gyrotactic behavior results in their swimming towards the regions of most rapid downflow. Because of that, the regions of downflow become denser than the regions of upflow. Buoyancy increases the upward velocity in the regions of upflow and downward velocity in the regions of downflow, thus enhancing the velocity fluctuations. The experiments performed by Kessler (1986) and the numerical results of Kuznetsov and Jiang (2001) indicate that if the permeability of porous medium is sufficiently small it will prevent the development of convection instability. However, for practical purposes, in order to maximize the flux of the cells in the upward direction it is desirable to have the permeability of the porous medium as high as possible. The aim of this paper is to investigate the value of critical permeability. If permeability is smaller than this critical value bioconvection does not occur and microorganisms simply swim in the upward direction.


Author(s):  
M. Bikdash ◽  
Y. P. Pang ◽  
E. P. Scott

To enable the design and analysis of Integrated Power Electronics Models (IPEMs), a high level of software integration is needed. The solvers needed range form electrical circuit simulators, like Saber, to thermal analysis and CFD solvers like I-DEAS. As an electrical design parameter is changed, its effect will, in principle, be felt all the way to the temperature distribution in the cooling fluid, and hence a complete solution of the temperature field may have to be recomputed. This is of course computationally prohibitive. Hence a reduced-order model of the thermal behavior of the heat sink is of great interest. In this paper, we will present an algorithm that can automatically generate these reduced-order models from finite-element simulations.


Author(s):  
D. Newport ◽  
T. Dalton ◽  
M. Davies

In this paper, measurements are presented of the temperature and velocity fields about two PCBs, with an array of five equally spaced two dimensional ribs. The ribs are two dimensional approximations of the Super Ball Grid Array (SuperBGA) package from Amkor electronics. The temperature and Nusselt number distributions are measured using Digital Moire´ Subtraction Interferometry and PIV is used to measure the velocity field. The effect of substrate conductivity is examined, and the level of thermal interaction is quantified. It is found that substrate conductivity significantly alters the induced boundary layer flow and also the recirculating vortex structure external to it. It is also found that there is a trade-off between a downstream component being heated by the thermal energy of the plume from a lower component, and cooled by the kinetic energy of that plume. The spacing to length ratio, above which the cooling effect is greater, is three for components mounted on a board with a high effective conductivity (15 W/m K). The ratio is greater than three for PCBs with lower effective conductivities. Previous work in the literature indicates a ratio greater than four for components mounted flush with an adiabatic substrate.


Author(s):  
John M. Stockie

The porous electrodes in a proton exchange membrane fuel cell are characterized by multi-phase flow, involving liquid water and multispecies gases, that are undergoing both condensation and catalyzed reactions. Careful management of liquid water and heat in the fuel cell system is essential for optimizing performance. The primary focus of this study is thus on condensation and water transport, neither of which have yet been studied in as much detail as other aspects of fuel cell dynamics. We develop a two-dimensional model for multi-phase flow in a porous medium that captures the fundamental transport processes going on in the electrodes. The governing equations are discretized using a finite volume approach, and numerical simulations are performed in order to determine the effect of changing operating conditions on fuel cell performance.


Author(s):  
R. S. Jadhav ◽  
R. S. Amano ◽  
J. Jatkar ◽  
R. J. Lind

An innovative and highly effective technique for remediation of soil has been developed—Heated Soil Vapor Extraction (HSVE), which is one of essential technologies that quickly and effectively remediates soil that is contaminated with organic compounds. The system efficiently uses the principles of heat transfer and diffusion to eliminate organic compounds from the soil. It basically consists of a high temperature heat source and a sink to take away the vaporized compounds in the presence of high temperature in the soil. A numerical study has been conducted to further strengthen the fact that the system is very effective, by actually modeling soil with system. Finite Element Analysis software ANSYS® has been used for the purpose of analysis. Such analysis will help environmental science and give new dimensions to soil remediation processes to clean soil off volatile organic compounds so that they can be carried out quickly, efficiently and economically.


Author(s):  
Pei-Wen Li ◽  
Laura Schaefer ◽  
Qing-Ming Wang ◽  
Minking K. Chyu

A numerical model is presented in this work to compute the inter-dependent fields of flow, temperature and the concentrations of multiple gases in a single tubular solid oxide fuel cell (SOFC) system. It was supposed that the fuel gas supplied to the fuel cell is from a pre-reformer and thus contains hydrogen and proportions of carbon monoxide, carbon dioxide, steam, and methane. The model takes mixture gas properties of the fuel and oxidant as functions of the numerically obtained local temperature, pressure and species concentrations, which are inter-dependent and intimately related to the electrochemical reaction in the SOFC. In the iterative computation steps, local electrochemical parameters were simultaneously calculated based on the local parameters of pressure, temperature, and concentration of the species available at each step. Upon the convergence of the computation, both local details and the overall performance of the fuel cell could be obtained. The numerical results obtained are helpful for better understanding of the operation of SOFCs.


Sign in / Sign up

Export Citation Format

Share Document