Carboxymethyl chitosan/conducting polymer as water-soluble composite binder for LiFePO4 cathode in lithium ion batteries

2016 ◽  
Vol 336 ◽  
pp. 107-114 ◽  
Author(s):  
Haoxiang Zhong ◽  
Aiqin He ◽  
Jidian Lu ◽  
Minghao Sun ◽  
Jiarong He ◽  
...  
2018 ◽  
Vol 53 (13) ◽  
pp. 9690-9700 ◽  
Author(s):  
Jinxin Huang ◽  
Jinglun Wang ◽  
Haoxiang Zhong ◽  
Lingzhi Zhang

Author(s):  
Yan Cui ◽  
Jiahui Chen ◽  
Jingyang Zhao ◽  
zhen Ma ◽  
Yuming Tan ◽  
...  

Abstract Water-soluble green cathode binders are developed to increase the performance of 18650 type LiNi0.5Mn0.3Co0.2O2 (NMC532) lithium-ion batteries (LIBs). Using four basal substances to prepare the composite binders, it is indicated that the cathode with lithium carboxymethyl cellulose (CMCLi)-polyacrylic acid/acrylate copolymer (type 306F) composite binder (Marked as Binder C) avoids the corrosion of aluminum substrate, and exhibits stronger adhesive force and better electrolyte adsorption capacity compared to other cathodes with PVDF binder and single aqueous binders. In particular, the electrochemical performance of the batteries with Binder C is also improved, initial specific capacity of 161.5 mAh g-1 at 0.2 C and retention capacity of 88.9% at 1 C after 1200 cycles are obtained. The batteries with Binder C also exhibit enhanced high-temperature storage performance, there is 97.9% residual capacity when the fully charged batteries are stored in 60 °C for 14 days. The enhanced performance is mainly attributed to the chemical stability and bonding ability of polyacrylic acid/acrylate copolymer and better conduction at the liquid-solid interface caused by CMCLi. These results indicate that Binder C has promising application prospects in the NMC532 cathode, and also provide a reference for the green production of NMC-based LIBs.


2021 ◽  
Vol 21 (10) ◽  
pp. 5057-5065
Author(s):  
Bo Liang ◽  
Xu Chen ◽  
Chuansheng Chen ◽  
Zhengchun Liu

The binder acts a pivotal part in determining the mechanical and electrochemical performances of lithium-ion battery electrodes. Herein, a series of water-soluble Si anode binders based on carboxymethyl chitosan (C-Cs) and styrene-butadiene rubber (SBR) is developed. Water-soluble C-Cs and aqueous emulsion SBR solution are mixed to form C-Cs/SBR binders. The physical properties of the modified Si electrode are investigated through electrolyte swelling test, peeling test, and scanning electron microscopy. The mechanical strength provided to Cu foils and active substances by the C-Cs/SBR binder is higher than that produced by C-Cs. This performance can effectively reduce the stress/strain caused by the drastic volume change of the Si anodes during repeated uses and improve the electrochemical property of lithium-ion batteries. The initial thicknesses of the Si electrodes with polyvinylidene fluoride, C-Cs, and C-Cs/SBR20 binders are approximately 7.1, 7.2, and 6.9 µm, respectively. After 100 cycles, their initial thicknesses increase to 11.2, 12.4, and 7.2 µm and correspond to expansions of 57.8%, 72.2%, and 4.3%, respectively. The discharge capacity of Si electrodes containing C-Cs/SBR20 binder reaches to 1340 mAh·g−1 when the current density is 4 A·g−1, and reserves to be 1020 mAh·g−1 after undergoing 400 cycles of repeated use at 500 mA·g−1.


2015 ◽  
Vol 8 (3) ◽  
pp. 869-875 ◽  
Author(s):  
Bo Wang ◽  
Wael Al Abdulla ◽  
Dianlong Wang ◽  
X. S. Zhao

LFP@N-GA with (010) facet oriented LFP NPs embedded in N-GA provides both rapid Li+ and electron pathways in the electrode as well as short Li+ diffusion length in LFP crystals.


2010 ◽  
Vol 177 ◽  
pp. 208-210
Author(s):  
Yi Jie Gu ◽  
Cui Song Zeng ◽  
Yu Bo Chen ◽  
Hui Kang Wu ◽  
Hong Quan Liu ◽  
...  

Olivine compounds LiFePO4 were prepared by the solid state reaction, and the electrochemical properties were studied with the composite cathode of LiFePO4/mesocarbon nanobead. High discharge rate performance can be achieved with the designed composite cathode of LiFePO4/mesocarbon nanobead. According to the experiment results, batteries with the composite cathode deliver discharge capacity of 1087mAh for 18650 type cell at 20C discharge rate at room temperature. The analysis shows that the uniformity of mesocarbon nanobead around LiFePO4 can supply enough change for electron transporting, which can enhance the rate capability for LiFePO4 cathode lithium ion batteries. It is confirmed that lithium ion batteries with LiFePO4 as cathode are suitable to electric vehicle application.


2009 ◽  
Vol 115 (1) ◽  
pp. 245-250 ◽  
Author(s):  
Y.Z. Dong ◽  
Y.M. Zhao ◽  
Y.H. Chen ◽  
Z.F. He ◽  
Q. Kuang

Ionics ◽  
2018 ◽  
Vol 25 (3) ◽  
pp. 927-937 ◽  
Author(s):  
Chunlei Li ◽  
Yingchun Xie ◽  
Ningshuang Zhang ◽  
Ling Ai ◽  
Youwei Liang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document