Water-Soluble Elastomeric Carboxymethyl Chitosan as an Efficient Binder for Si Anodes of Lithium Ion Batteries

2021 ◽  
Vol 21 (10) ◽  
pp. 5057-5065
Author(s):  
Bo Liang ◽  
Xu Chen ◽  
Chuansheng Chen ◽  
Zhengchun Liu

The binder acts a pivotal part in determining the mechanical and electrochemical performances of lithium-ion battery electrodes. Herein, a series of water-soluble Si anode binders based on carboxymethyl chitosan (C-Cs) and styrene-butadiene rubber (SBR) is developed. Water-soluble C-Cs and aqueous emulsion SBR solution are mixed to form C-Cs/SBR binders. The physical properties of the modified Si electrode are investigated through electrolyte swelling test, peeling test, and scanning electron microscopy. The mechanical strength provided to Cu foils and active substances by the C-Cs/SBR binder is higher than that produced by C-Cs. This performance can effectively reduce the stress/strain caused by the drastic volume change of the Si anodes during repeated uses and improve the electrochemical property of lithium-ion batteries. The initial thicknesses of the Si electrodes with polyvinylidene fluoride, C-Cs, and C-Cs/SBR20 binders are approximately 7.1, 7.2, and 6.9 µm, respectively. After 100 cycles, their initial thicknesses increase to 11.2, 12.4, and 7.2 µm and correspond to expansions of 57.8%, 72.2%, and 4.3%, respectively. The discharge capacity of Si electrodes containing C-Cs/SBR20 binder reaches to 1340 mAh·g−1 when the current density is 4 A·g−1, and reserves to be 1020 mAh·g−1 after undergoing 400 cycles of repeated use at 500 mA·g−1.

2021 ◽  
Vol 105 (1) ◽  
pp. 35-42
Author(s):  
Andras Zsigmond ◽  
Jiri Libich

This paper deals with various types of electrode binders used in lithium-ion batteries. The electrode binders play important role in battery, the binders directly affect almost all aspect of electrode characteristics. As the one of the most import parameter is the electrode charge-discharge long term stability. The three binders have been tested in context of negative electrode in lithium-ion battery. The natural graphite has been chosen as an active electrode material. The natural graphite takes majority as negative electrode material on commercial market with lithium-ion batteries. The three kind of binders was established for testing: polyvinylidene fluoride (PVDF), styrene-butadiene rubber (SBR) and polyimide P84. The influence of these binders on charge-discharge stability are evaluated and described in this paper.


2017 ◽  
Vol 21 (12) ◽  
pp. 3429-3435 ◽  
Author(s):  
D. Versaci ◽  
R. Nasi ◽  
U. Zubair ◽  
J. Amici ◽  
M. Sgroi ◽  
...  

Abstract In the production of commercial Li-ion batteries, the active materials slurries are generally prepared using polyvinylidene fluoride (PVdF) as binder because of its good adhesion properties and electrochemical stability. Unfortunately, there are some disadvantages related to the use of PVdF: the most important is the use of toxic and environmentally unfriendly solvents, such as N-methyl-pyrrolidone (NMP), and the second is the high costs. In the light of these considerations, it seemed straightforward to investigate the suitability of some water-soluble, inexpensive, and eco-friendly materials to test as alternative binders (sodium alginate, chitosan tragacanth gum, gelatin). The rheological properties of these materials have been investigated in addition to the electrochemical characterization. Furthermore, graphite electrodes with PVdF, carboxymethyl cellulose (CMC), and styrene-butadiene rubber (SBR) binders have been considered for sake of comparison. We found that some of these water-soluble binders, besides good electrochemical performances, showed a high adhesion to the current collector and a good electrochemical stability under the experimental conditions employed, which makes them interesting for the next generation of Li-ion batteries.


Materials ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3125 ◽  
Author(s):  
Yuan Wang ◽  
Chuanqiang Yin ◽  
Zhenglin Song ◽  
Qiulin Wang ◽  
Yu Lan ◽  
...  

Surface coating modification on a polyethylene separator serves as a promising way to meet the high requirements of thermal dimensional stability and excellent electrolyte wettability for lithium ion batteries (LIBs). In this paper, we report a new type of surface modified separator by coating polyvinylidene fluoride (PVDF) organic particles on traditional microporous polyethylene (PE) separators. The PE separator coated by PVDF particles (PE-PVDF separator) has higher porosity (61.4%), better electrolyte wettability (the contact angle to water was 3.28° ± 0.21°) and superior ionic conductivity (1.53 mS/cm) compared with the bare PE separator (51.2%, 111.3° ± 0.12°, 0.55 mS/cm). On one hand, the PVDF organic polymer has excellent organic electrolyte compatibility. On the other hand, the PVDF particles contain sub-micro spheres, of which the separator can possess a large specific surface area to absorb additional electrolyte. As a result, LIBs assembled using the PE-PVDF separator showed better electrochemical performances. For example, the button cell using a PE-PVDF as the separator had a higher capacity retention rate (70.01% capacity retention after 200 cycles at 0.5 C) than the bare PE separator (62.5% capacity retention after 200 cycles at 0.5 C). Moreover, the rate capability of LIBs was greatly improved as well—especially at larger current densities such as 2 C and 5 C.


2021 ◽  
Vol 12 (1) ◽  
pp. 67-78
Author(s):  
S. P. Kuksenko ◽  
◽  
H. O. Kaleniuk ◽  
Yu. O. Tarasenko ◽  
M. T. Kartel ◽  
...  

Even partial replacement of graphite in the anode of lithium-ion batteries with silicon can significantly increase their specific energy. But the issue is the insufficient life cycle of such batteries due to the accelerated degradation of the liquid organic electrolyte with traditional lithium hexafluorophosphate, especially at elevated temperatures. The subject of discussions and further research are the processes involving a natural oxide layer on the surface of silicon in the manufacture and electrochemical litiation–delitiation of Si-containing electrodes. Among the most promising areas for solving the issues of practical application of silicon are new additives to the electrolyte and polymeric binders for electrode masses. This paper demonstrates the capability of trimethylsilylisocyanate (with aminosilane and isocyanate functional groups) as an additive to a liquid organic electrolyte (LiPF6 / fluoroethylene carbonate + ethyl methyl carbonate + vinylene carbonate + ethylene sulfite) to scavenge the reactive HF and PF5 species that alleviates the thermal decomposition of fluoroethylene carbonate at elevated temperatures. This makes it possible to increase the electrochemical parameters of half-cells with a hybrid graphite–nanosilicon working electrode when using water-based binders – carboxymethylcellulose and styrene-butadiene rubber. The addition of trimethylsilylisocyanate in the electrolyte significantly improves the reversible capacity of hybrid electrodes and reduces the accumulated irreversible capacity during prolonged cycling at normal temperature and after exposure at 50 °C, therefore to be effective for use in high-energy lithium-ion batteries.


Sign in / Sign up

Export Citation Format

Share Document