scholarly journals High surface area bio-waste based carbon as a superior electrode for vanadium redox flow battery

2017 ◽  
Vol 362 ◽  
pp. 50-56 ◽  
Author(s):  
Makhan Maharjan ◽  
Arjun Bhattarai ◽  
Mani Ulaganathan ◽  
Nyunt Wai ◽  
Moe Ohnmar Oo ◽  
...  
2019 ◽  
Author(s):  
Matthias Wessling

State-of-the-art all-vanadium redox flow batteries employ porous carbonaceous materials as electrodes. The battery cells possess non-scalable fixed electrodes inserted into a cell stack. In contrast, a conductive particle network dispersed in the electrolyte, known as slurry electrode, may be beneficial for a scalable redox flow battery. In this work, slurry electrodes are successfully introduced to an all-vanadium redox flow battery. Activated carbon and graphite powder particles are dispersed up to 20 wt% in the vanadium electrolyte and charge-discharge behavior is inspected via polarization studies. Graphite powder slurry is superior over activated carbon with a polarization behavior closer to the standard graphite felt electrodes. 3D-printed conductive static mixers introduced to the slurry channel improve the charge transfer via intensified slurry mixing and increased surface area. Consequently, a significant increase in the coulombic efficiency up to 95% and energy efficiency up to 65% is obtained. Our results show that slurry electrodes supported by conductive static mixers can be competitive to state-of-the-art electrodes yielding an additional degree of freedom in battery design. Research into carbon properties (particle size, internal surface area, pore size distribution) tailored to the electrolyte system and optimization of the mixer geometry may yield even better battery properties.


Author(s):  
Tongxue Zhang ◽  
Yingqiao Jiang ◽  
Zixuan Zhang ◽  
Jing Xue ◽  
Yuehua Li ◽  
...  

Author(s):  
Sebastiano Bellani ◽  
Leyla Najafi ◽  
Mirko Prato ◽  
Reinier Oropesa-Nuñez ◽  
Beatriz Martín-García ◽  
...  

2021 ◽  
Vol 415 ◽  
pp. 129014
Author(s):  
Yingqiao Jiang ◽  
Gang Cheng ◽  
Yuehua Li ◽  
Zhangxing He ◽  
Jing Zhu ◽  
...  

Author(s):  
Bhuvaneswari M. Sivakumar ◽  
Venkateshkumar Prabhakaran ◽  
Kaining Duanmu ◽  
Edwin Thomsen ◽  
Brian Berland ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document