Non-uniform, multi-stack solid oxide fuel cell (SOFC) system design for small system size and high efficiency

2019 ◽  
Vol 426 ◽  
pp. 135-142 ◽  
Author(s):  
Tolga Pirasaci
2006 ◽  
Vol 408-412 ◽  
pp. 512-517 ◽  
Author(s):  
Toru Inagaki ◽  
Futoshi Nishiwaki ◽  
Jirou Kanou ◽  
Satoru Yamasaki ◽  
Kei Hosoi ◽  
...  

2016 ◽  
Vol 689 ◽  
pp. 133-137
Author(s):  
Anuchart Srisiriwat ◽  
Nawadee Srisiriwat

A solid oxide fuel cell (SOFC) is known as an interesting energy conversion device because of its fuel flexibility and high efficiency. The hydrogen-rich stream is used as fuel carrier converting to generate electrical energy. A non-stoichiometric thermodynamic model based on minimum free energy was performed to predict the amount of hydrogen production via the methanol reforming under supercritical water (SCW) condition. The effects of SCW reaction temperature and water-to-methanol molar ratio on the SOFC power generation integrated with SCW reforming from methanol were investigated. The hydrogen yield, the required heat duty for a feed preheater and a SCW reactor and the SOFC power generation increase with increasing the SCW reaction temperature and the amount of water fed in SCW reactor. Under operating parameters of SCW reformer based on 1 mole/sec of methanol fed at the high temperature of 1273 K and water-to-methanol molar ratio of 5, the SOFC electrical power of 246 kW was produced with the maximum fuel utilization of 0.7.


Author(s):  
Kousuke Nishida ◽  
Toshimi Takagi ◽  
Shinichi Kinoshita

A solid oxide fuel cell (SOFC) is expected to be applied to the distributed energy systems because of its high thermal efficiency and exhaust gas utilization. The exhaust heat from the SOFC can be transferred to the electric power by a gas turbine, and the high efficiency power generation can be achieved by constructing the SOFC and gas turbine hybrid system. In this study, the local processes in the electrodes and electrolyte of unit SOFC are analyzed taking into account the heat conduction, mass diffusion, electrode reactions and the transport of electron and oxygen ion. The temperature and concentration distributions perpendicular to the electrolyte membrane are shown. The effects of the operating conditions on the cell performance are also shown. Furthermore, the entropy generation and exergy loss of each process in the electrodes and electrolyte are analyzed and the reason for generating the exergy loss in the SOFC is clarified. It is noted that two electrode reactions are responsible for the major exergy loss.


Author(s):  
A. D. Rao ◽  
A. Verma ◽  
G. S. Samuelsen

An advanced coal based power plant system that has an electrical efficiency of 60% on an HHV basis is defined. The solid oxide fuel cell (SOFC) hybrid has been shown to be an essential requirement in order to achieve such a high efficiency. The coal is gasified utilizing a high pressure air-blown advanced transport reactor (ATR). A thermo-economic analysis of this integrated gasification fuel cell (IGFC) plant is performed by comparing it to an integrated gasification combined cycle (IGCC) plant that utilizes a gas turbine combined cycle for power generation. Results of this thermo-economic analysis indicate that the required “break even” cost of the SOFC system is $400/kW on an installed cost basis such that the cost of electricity of IGFC plant is the same as that of the IGCC plant. Coproduction of H2 and capture of carbon emissions may be incorporated in the design without causing a major thermal penalty on the system performance when high temperature separation membranes are employed. An O2-blown gasifier is required for such applications. The technology development needs are addressed.


2017 ◽  
Vol 205 ◽  
pp. 1189-1201 ◽  
Author(s):  
Dawid P. Hanak ◽  
Barrie G. Jenkins ◽  
Tim Kruger ◽  
Vasilije Manovic

2003 ◽  
Author(s):  
Dawson A. Plummer ◽  
Comas Haynes ◽  
William Wepfer

Solid oxide fuel cell (SOFC) technology incorporates electrochemical reactions that generate electricity and high quality heat. The coupling of this technology with gas turbine bottoming cycles, to form hybrid power systems, leads to high efficiency levels. The purpose of this study is to conceptually integrate the hybrid power system with existing and imminent coal gasification technologies through computer simulation. The gasification technologies considered for integration include the Kellogg Brown Root (KBR) Transport Reactor and Entrained Coal Gasification. Parametric studies were performed to assess the effect of changes in pertinent fuel cell stack process settings such as operating voltage, inverse equivalence ratio and fuel utilization will be varied. Power output, system efficiency and costs are the chosen dependent variables of interest. Coal gasification data and a proven SOFC model program are used to test the theoretical integration. Feasibility and economic comparisons between the new integrated system and existing conventional systems are also made.


Sign in / Sign up

Export Citation Format

Share Document