Lithium solid-state batteries: State-of-the-art and challenges for materials, interfaces and processing

2021 ◽  
pp. 229919
Author(s):  
Nicola Boaretto ◽  
Iñigo Garbayo ◽  
Sona Valiyaveettil-SobhanRaj ◽  
Amaia Quintela ◽  
Chunmei Li ◽  
...  
Materials ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 3892 ◽  
Author(s):  
Mauger ◽  
Julien ◽  
Paolella ◽  
Armand ◽  
Zaghib

Most of the current commercialized lithium batteries employ liquid electrolytes, despite their vulnerability to battery fire hazards, because they avoid the formation of dendrites on the anode side, which is commonly encountered in solid-state batteries. In a review two years ago, we focused on the challenges and issues facing lithium metal for solid-state rechargeable batteries, pointed to the progress made in addressing this drawback, and concluded that a situation could be envisioned where solid-state batteries would again win over liquid batteries for different applications in the near future. However, an additional drawback of solid-state batteries is the lower ionic conductivity of the electrolyte. Therefore, extensive research efforts have been invested in the last few years to overcome this problem, the reward of which has been significant progress. It is the purpose of this review to report these recent works and the state of the art on solid electrolytes. In addition to solid electrolytes stricto sensu, there are other electrolytes that are mainly solids, but with some added liquid. In some cases, the amount of liquid added is only on the microliter scale; the addition of liquid is aimed at only improving the contact between a solid-state electrolyte and an electrode, for instance. In some other cases, the amount of liquid is larger, as in the case of gel polymers. It is also an acceptable solution if the amount of liquid is small enough to maintain the safety of the cell; such cases are also considered in this review. Different chemistries are examined, including not only Li-air, Li–O2, and Li–S, but also sodium-ion batteries, which are also subject to intensive research. The challenges toward commercialization are also considered.


2018 ◽  
Vol 11 (8) ◽  
pp. 1945-1976 ◽  
Author(s):  
Zhizhen Zhang ◽  
Yuanjun Shao ◽  
Bettina Lotsch ◽  
Yong-Sheng Hu ◽  
Hong Li ◽  
...  

This critical review presents the state of the art research progress, proposes strategies to improve the conductivity of solid electrolytes, discusses the chemical and electrochemical stabilities, and uncovers future perspectives for solid state batteries.


1983 ◽  
Vol 44 (C3) ◽  
pp. C3-567-C3-572 ◽  
Author(s):  
F. Bénière ◽  
D. Boils ◽  
H. Cánepa ◽  
J. Franco ◽  
A. Le Corre ◽  
...  

2019 ◽  
Vol 92 (11) ◽  
pp. 430-434
Author(s):  
Akitoshi HAYASHI ◽  
Atsushi SAKUDA ◽  
Masahiro TATSUMISAGO

2019 ◽  
Author(s):  
Florian Strauss ◽  
Lea de Biasi ◽  
A-Young Kim ◽  
Jonas Hertle ◽  
Simon Schweidler ◽  
...  

Measures to improve the cycling performance and stability of bulk-type all-solid-state batteries (SSBs) are currently being developed with the goal of substituting conventional Li-ion battery (LIB) technology. As known from liquid electrolyte based LIBs, layered oxide cathode materials undergo volume changes upon (de)lithiation, causing mechanical degradation due to particle fracture, among others. Unlike solid electrolytes, liquid electrolytes are somewhat capable of accommodating morphological changes. In SSBs, the rigidity of the materials used typically leads to adverse contact loss at the interfaces of cathode material and solid electrolyte during cycling. Hence, designing zero- or low-strain electrode materials for application in next-generation SSBs is desirable. In the present work, we report on novel Co-rich NCMs, NCM361 (60% Co) and NCM271 (70% Co), showing minor volume changes up to 4.5 V vs Li<sup>+</sup>/Li, as determined by <i>operando</i> X-ray diffraction and pressure measurements of LIB pouch and pelletized SSB cells, respectively. Both cathode materials exhibit good cycling performance when incorporated into SSB cells using argyrodite Li<sub>6</sub>PS<sub>5</sub>Cl solid electrolyte, albeit their morphology and secondary particle size have not yet been optimized.


2019 ◽  
Author(s):  
Florian Strauss ◽  
Lea de Biasi ◽  
A-Young Kim ◽  
Jonas Hertle ◽  
Simon Schweidler ◽  
...  

Measures to improve the cycling performance and stability of bulk-type all-solid-state batteries (SSBs) are currently being developed with the goal of substituting conventional Li-ion battery (LIB) technology. As known from liquid electrolyte based LIBs, layered oxide cathode materials undergo volume changes upon (de)lithiation, causing mechanical degradation due to particle fracture, among others. Unlike solid electrolytes, liquid electrolytes are somewhat capable of accommodating morphological changes. In SSBs, the rigidity of the materials used typically leads to adverse contact loss at the interfaces of cathode material and solid electrolyte during cycling. Hence, designing zero- or low-strain electrode materials for application in next-generation SSBs is desirable. In the present work, we report on novel Co-rich NCMs, NCM361 (60% Co) and NCM271 (70% Co), showing minor volume changes up to 4.5 V vs Li<sup>+</sup>/Li, as determined by <i>operando</i> X-ray diffraction and pressure measurements of LIB pouch and pelletized SSB cells, respectively. Both cathode materials exhibit good cycling performance when incorporated into SSB cells using argyrodite Li<sub>6</sub>PS<sub>5</sub>Cl solid electrolyte, albeit their morphology and secondary particle size have not yet been optimized.


2019 ◽  
Author(s):  
Xiaohan Wu ◽  
Juliette Billaud ◽  
Iwan Jerjen ◽  
Federica Marone ◽  
Yuya Ishihara ◽  
...  

<div> <div> <div> <p>All-solid-state batteries are considered as attractive options for next-generation energy storage owing to the favourable properties (unit transference number and thermal stabilities) of solid electrolytes. However, there are also serious concerns about mechanical deformation of solid electrolytes leading to the degradation of the battery performance. Therefore, understanding the mechanism underlying the electro-mechanical properties in SSBs are essentially important. Here, we show three-dimensional and time-resolved measurements of an all-solid-state cell using synchrotron radiation x-ray tomographic microscopy. We could clearly observe the gradient of the electrochemical reaction and the morphological evolution in the composite layer. Volume expansion/compression of the active material (Sn) was strongly oriented along the thickness of the electrode. While this results in significant deformation (cracking) in the solid electrolyte region, we also find organized cracking patterns depending on the particle size and their arrangements. This study based on operando visualization therefore opens the door towards rational design of particles and electrode morphology for all-solid-state batteries. </p> </div> </div> </div>


2019 ◽  
Author(s):  
Georg Dewald ◽  
Saneyuki Ohno ◽  
Marvin Kraft ◽  
Raimund Koerver ◽  
Paul Till ◽  
...  

<p>All-solid-state batteries are often expected to replace conventional lithium-ion batteries in the future. However, the practical electrochemical and cycling stability of the best-conducting solid electrolytes, i.e. lithium thiophosphates, are still critical issues that prevent long-term stable high-energy cells. In this study, we use <i>stepwise</i><i>cyclic voltammetry </i>to obtain information on the practical oxidative stability limit of Li<sub>10</sub>GeP<sub>2</sub>S<sub>12</sub>, a Li<sub>2</sub>S‑P<sub>2</sub>S<sub>5</sub>glass, as well as the argyrodite Li<sub>6</sub>PS<sub>5</sub>Cl solid electrolytes. We employ indium metal and carbon black as the counter and working electrode, respectively, the latter to increase the interfacial contact area to the electrolyte as compared to the commonly used planar steel electrodes. Using a stepwise increase in the reversal potentials, the onset potential at 25 °C of oxidative decomposition at the electrode-electrolyte interface is identified. X‑ray photoelectron spectroscopy is used to investigate the oxidation of sulfur(-II) in the thiophosphate polyanions to sulfur(0) as the dominant redox process in all electrolytes tested. Our results suggest that after the formation of these decomposition products, significant redox behavior is observed. This explains previously reported redox activity of thiophosphate solid electrolytes, which contributes to the overall cell performance in solid-state batteries. The <i>stepwise cyclic voltammetry</i>approach presented here shows that the practical oxidative stability at 25 °C of thiophosphate solid electrolytes against carbon is kinetically higher than predicted by thermodynamic calculations. The method serves as an efficient guideline for the determination of practical, kinetic stability limits of solid electrolytes. </p>


2019 ◽  
Author(s):  
Georg Dewald ◽  
Saneyuki Ohno ◽  
Marvin Kraft ◽  
Raimund Koerver ◽  
Paul Till ◽  
...  

<p>All-solid-state batteries are often expected to replace conventional lithium-ion batteries in the future. However, the practical electrochemical and cycling stability of the best-conducting solid electrolytes, i.e. lithium thiophosphates, are still critical issues that prevent long-term stable high-energy cells. In this study, we use <i>stepwise</i><i>cyclic voltammetry </i>to obtain information on the practical oxidative stability limit of Li<sub>10</sub>GeP<sub>2</sub>S<sub>12</sub>, a Li<sub>2</sub>S‑P<sub>2</sub>S<sub>5</sub>glass, as well as the argyrodite Li<sub>6</sub>PS<sub>5</sub>Cl solid electrolytes. We employ indium metal and carbon black as the counter and working electrode, respectively, the latter to increase the interfacial contact area to the electrolyte as compared to the commonly used planar steel electrodes. Using a stepwise increase in the reversal potentials, the onset potential at 25 °C of oxidative decomposition at the electrode-electrolyte interface is identified. X‑ray photoelectron spectroscopy is used to investigate the oxidation of sulfur(-II) in the thiophosphate polyanions to sulfur(0) as the dominant redox process in all electrolytes tested. Our results suggest that after the formation of these decomposition products, significant redox behavior is observed. This explains previously reported redox activity of thiophosphate solid electrolytes, which contributes to the overall cell performance in solid-state batteries. The <i>stepwise cyclic voltammetry</i>approach presented here shows that the practical oxidative stability at 25 °C of thiophosphate solid electrolytes against carbon is kinetically higher than predicted by thermodynamic calculations. The method serves as an efficient guideline for the determination of practical, kinetic stability limits of solid electrolytes. </p>


Sign in / Sign up

Export Citation Format

Share Document