Actuator fault estimation for two-stage chemical reactor system based on delta operator approach

2021 ◽  
Vol 107 ◽  
pp. 37-46
Author(s):  
Yu Wu ◽  
Dongsheng Du ◽  
Bei Liu ◽  
Zehui Mao
Author(s):  
Wenping Xue ◽  
Pan Jin ◽  
Kangji Li

The actuator fault estimation (FE) problem is addressed in this study for the quarter-car active suspension system (ASS) with consideration of the sprung mass variation. Firstly, the ASS is modeled as a parameter-dependent system with actuator fault and external disturbance input. Then, a parameter-dependent FE observer is designed by using the radial basis function neural network (RBFNN) to approximate the actuator fault. In addition, the design conditions are turned into a linear matrix inequality (LMI) problem which can be easily solved with the aid of LMI toolbox. Finally, simulation and comparison results are given to show the accuracy and rapidity of the proposed FE method, as well as good adaptability against the sprung mass variation. Moreover, a simple FE-based active fault-tolerant control (AFTC) strategy is provided to further demonstrate the effectiveness and applicability of the proposed FE method.


2010 ◽  
Vol 22 (2) ◽  
pp. 230-236 ◽  
Author(s):  
Rohan Jain ◽  
Ashish Pathak ◽  
T.R. Sreekrishnan ◽  
M.G. Dastidar

Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Zhi Wang ◽  
Yateng Bai ◽  
Jin Xie ◽  
Zhijie Li ◽  
Caoyuan Ma ◽  
...  

In order to overcome disturbances such as the instability of internal parameters or the actuator fault, the time-varying proportional-integral sliding-mode surface is defined for coordinated control of the excitation generator and the steam valve of waste heat power generation units, and a controller based on sliding-mode function is designed which makes the system stable for a limited time and gives it good performance. Based on this, a corresponding fault estimation law is designed for specific faults of systems, and a sliding-mode fault-tolerant controller is constructed based on the fixed-time control theory so that the systems can still operate stably when an actuator fault occurs and have acceptable performance. The simulation results show that the tracking error asymptotically tends to be zero, and the fixed-time sliding-mode fault-tolerant controller can obviously improve the dynamic performance of the system.


Sign in / Sign up

Export Citation Format

Share Document