Proteomic analysis of changes in mitochondrial protein expression during peach fruit ripening and senescence

2016 ◽  
Vol 147 ◽  
pp. 197-211 ◽  
Author(s):  
Xiaoqin Wu ◽  
Li Jiang ◽  
Mingliang Yu ◽  
Xiujuan An ◽  
Ruijuan Ma ◽  
...  
PROTEOMICS ◽  
2009 ◽  
Vol 9 (17) ◽  
pp. 4241-4253 ◽  
Author(s):  
Guozheng Qin ◽  
Qing Wang ◽  
Jia Liu ◽  
Boqiang Li ◽  
Shiping Tian

2011 ◽  
Vol 23 (1) ◽  
pp. 137
Author(s):  
K. Takeda ◽  
M. Tasai ◽  
S. Akagi ◽  
S. Watanabe ◽  
M. Oe ◽  
...  

Aberrant reprogramming of donor somatic cell nuclei may result in many severe problems in animal cloning. The inability to establish functional interactions between donor nucleus and recipient mitochondria is also likely responsible for developmental deficiency. However, an understanding of the expressed proteins in cattle is lacking. In the present study, alterations in mitochondrial protein levels between somatic cell nuclear transferred (SCNT) and control animals (mostly produced by AI) were investigated. Nuclear transfer was performed using donor cells prepared from cumulus cells (B1), ear skin, or skeletal muscle from adult Japanese Black cattle, and enucleated in vitro matured oocytes (Holstein or Japanese Black) as previously reported (Akagi et al. 2003). Liver samples were collected from postmortem SCNT calves (CB1-3; 0, 1, and 9 days postnatally) and adult SCNT cattle (CA1-4; 6, 6, 6, and 5 years of age) produced from the same cell line (B1) and preserved at –80°C. Mitochondrial fractions were prepared from the frozen–thawed liver samples by mechanical homogenization and differential centrifugation, and subjected to two-dimensional difference in gel electrophoresis (2D-DIGE) using CyDye™ dyes (Cy2, Cy3, Cy5; GE Healthcare) for specific labelling. Protein expression changes were confirmed by ImageMaster 2D Platinum software with a volume ratio greater than 2.0 (Student’s t-test; P < 0.05). The expression of 5 proteins were up-regulated in SCNT calves compared to control calves (n = 6; Day 250 fetus, 0, 4, 8, 8, and 8 days after birth; P < 0.05). Expressed protein patterning compared to control groups was different among SCNT calves. The protein spots of CB-1 showed great differences compared with other SCNT calves; 13 spots were up-regulated, and 18 spots were down-regulated. In adult SCNT cattle, the concentrations of 3 proteins were higher when compared to control cattle (n = 4; 2, 2, 6, and 8 years of age; P < 0.05). Protein expression was different among individual SCNT animals even if they were produced from the same donor cell source. For example, 9 spots were up-regulated and 7 spots were down-regulated in CA-1. In contrast, no differences were detected in 2 of the SCNT cattle (CA-3 and 4; P < 0.05). Novel proteins were not identified in any of the SCNT cattle or calves. In conclusion, alteration of mitochondrial protein expression levels were observed in non-viable neonatal SCNT calves and varied among SCNT individuals; suggesting that mitochondrial related gene expression may be implicated in early losses. Comparative proteomic analysis represents an important tool for further studies on SCNT animals. We thank Dr. C. A. Pinkert (Auburn Univ.) and Dr. Somfai (NARO) for their assistance. This work was supported by a grant from the NARO, Japan.


2011 ◽  
Vol 24 (4) ◽  
pp. 549-558 ◽  
Author(s):  
Brendan D. Stamper ◽  
Isaac Mohar ◽  
Terrance J. Kavanagh ◽  
Sidney D. Nelson

2020 ◽  
Vol 17 ◽  
Author(s):  
Qian Lu ◽  
Hai-Zhu Xing ◽  
Nian-Yun Yang

Background: CCl4 acute liver injury (ALI) is a classical model for experimental research. However, there are few reports involved in the fundamental research of CCl4-induced ALI Ligustri Lucidi Fructus (LLF) are and its prescription have been used to treat hepatitis illness clinically. LLF and its active ingredients displayed anti-hepatitis effects, but the mechanism of function has not been fully clarified Objective: To investigate the proteomic analysis of CCl4-induced ALI, and examine the effects of active total glycosides (TG) from LLF on ALI of mice4, including histopathological survey and proteomic changes of liver tissues, and delineate the possible underlying mechanism. Methods: CCl4 was used to produce ALI mice model. The model mice were intragastrically administrated with TG and the liver his-topathological changes of mice were examined. At the end of test, mice liver samples were collected, after protein denaturation, re-duction, desalination and enzymatic hydrolysis, identification was carried out by nano LC-ESI-OrbiTrap MS/MS technology. The data was processed by Maxquant software. The differentially-expressed proteins were screened and identified, and their biological information was also analyzed based on GO and KEGG analysis. Key protein expression was validated by Western blot analysis Results: A total of 705 differentially-expressed proteins were identified during the normal, model and administration group. 9 signifi-cant differential proteins were focused based on analysis. Liver protein expression changes of CCl4-induced ALI mice were mainly involved in several important signal channels, namely FoxO signaling pathway, autophagy-animal, insulin signaling pathway. TG has anti-liver damnification effect in ALI mice, the mechanism of which is related to FoxO1 and autophagy pathways Conclusion: CCl4 inhibited expression of insulin-Like growth factor 1 (Igf1) and 3-phosphoinositide-dependent protein kinase 1 (Pdpk1) in liver cells and induced insulin resistance, thus interfered with mitochondrial autophagy and regeneration of liver cells and the metabolism of glucose and lipid, and caused hepatic necrosis in mice. TG resisted liver injury in mice. TG adjusted the expression level of key proteins Igf1 and Pdpk1 after liver injury and improved insulin resistance, thus promoted autophagy and resisted the liver damage


2012 ◽  
Vol 47 (6) ◽  
pp. 417-424 ◽  
Author(s):  
Zoltan Bori ◽  
Zhongfu Zhao ◽  
Erika Koltai ◽  
Ioannis G. Fatouros ◽  
Athanasios Z. Jamurtas ◽  
...  

2017 ◽  
Vol 142 (4) ◽  
pp. 246-259 ◽  
Author(s):  
Yunqing Zhu ◽  
Wenfang Zeng ◽  
Xiaobei Wang ◽  
Lei Pan ◽  
Liang Niu ◽  
...  

Pectins are synthesized and secreted to the cell wall as highly methyl-esterified polymers and demethyl-esterified by pectin methylesterases (PMEs), which are regulated by pectin methylesterase inhibitors (PMEIs). PMEs and PMEIs are involved in pectin degradation during fruit softening; however, the roles of the PME and PMEI gene families during fruit softening remain unclear. Here, 71 PME and 30 PMEI genes were identified in the peach (Prunus persica) genome and shown to be unevenly distributed on all eight chromosomes. The 71 PME genes comprised 36 Type-1 PMEs and 35 Type-2 PMEs. Transcriptome analysis showed that 11 PME and 15 PMEI genes were expressed during fruit ripening in melting flesh (MF) and stony-hard (SH) peaches. Three PME and five PMEI genes were expressed at higher levels in MF than in SH fruit and exhibited softening-associated expression patterns. Upstream regulatory cis elements of these genes related to hormone response, especially naphthaleneacetic acid and ethylene, were investigated. One PME (Prupe.7G192800) and two PMEIs (Prupe.1G114500 and Prupe.2G279800), and their promoters were identified as potential targets for future studies on the biochemical metabolism and regulation of fruit ripening. The comprehensive data generated in this study will improve our understanding of the PME and PMEI gene families in peach. However, further detailed investigation is necessary to elucidate the biochemical function and regulation mechanism of the PME and PMEI genes during peach fruit ripening.


Sign in / Sign up

Export Citation Format

Share Document