scholarly journals Characterization and Transcript Profiling of PME and PMEI Gene Families during Peach Fruit Maturation

2017 ◽  
Vol 142 (4) ◽  
pp. 246-259 ◽  
Author(s):  
Yunqing Zhu ◽  
Wenfang Zeng ◽  
Xiaobei Wang ◽  
Lei Pan ◽  
Liang Niu ◽  
...  

Pectins are synthesized and secreted to the cell wall as highly methyl-esterified polymers and demethyl-esterified by pectin methylesterases (PMEs), which are regulated by pectin methylesterase inhibitors (PMEIs). PMEs and PMEIs are involved in pectin degradation during fruit softening; however, the roles of the PME and PMEI gene families during fruit softening remain unclear. Here, 71 PME and 30 PMEI genes were identified in the peach (Prunus persica) genome and shown to be unevenly distributed on all eight chromosomes. The 71 PME genes comprised 36 Type-1 PMEs and 35 Type-2 PMEs. Transcriptome analysis showed that 11 PME and 15 PMEI genes were expressed during fruit ripening in melting flesh (MF) and stony-hard (SH) peaches. Three PME and five PMEI genes were expressed at higher levels in MF than in SH fruit and exhibited softening-associated expression patterns. Upstream regulatory cis elements of these genes related to hormone response, especially naphthaleneacetic acid and ethylene, were investigated. One PME (Prupe.7G192800) and two PMEIs (Prupe.1G114500 and Prupe.2G279800), and their promoters were identified as potential targets for future studies on the biochemical metabolism and regulation of fruit ripening. The comprehensive data generated in this study will improve our understanding of the PME and PMEI gene families in peach. However, further detailed investigation is necessary to elucidate the biochemical function and regulation mechanism of the PME and PMEI genes during peach fruit ripening.

2021 ◽  
Vol 23 (1) ◽  
pp. 101
Author(s):  
Jianfa Cai ◽  
Xuelian Mo ◽  
Chenjin Wen ◽  
Zhen Gao ◽  
Xu Chen ◽  
...  

Strawberry is a soft fruit with short postharvest life, due to a rapid loss of firmness. Pectin methylesterase (PME)-mediated cell wall remodeling is important to determine fruit firmness and softening. Previously, we have verified the essential role of FvPME38 in regulation of PME-mediated strawberry fruit softening. However, the regulatory network involved in PME-mediated fruit softening is still largely unknown. Here, we identified an R2R3-type MYB transcription factor FvMYB79, which activates the expression level of FvPME38, thereby accelerating fruit softening. During fruit development, FvMYB79 co-expressed with FvPME38, and this co-expression pattern was opposite to the change of fruit firmness in the fruit of ‘Ruegen’ which significantly decreased during fruit developmental stages and suddenly became very low after the color turning stage. Via transient transformation, FvMYB79 could significantly increase the transcriptional level of FvPME38, leading to a decrease of firmness and acceleration of fruit ripening. In addition, silencing of FvMYB79 showed an insensitivity to ABA-induced fruit ripening, suggesting a possible involvement of FvMYB79 in the ABA-dependent fruit softening process. Our findings suggest FvMYB79 acts as a novel regulator during strawberry ripening via transcriptional activation of FvPME38, which provides a novel mechanism for improvement of strawberry fruit firmness.


2008 ◽  
Vol 14 (4) ◽  
pp. 385-391 ◽  
Author(s):  
G.A. Manganaris ◽  
M. Vasilakakis ◽  
I. Mignani ◽  
A. Manganaris

A comparative study between melting flesh peach fruit (Prunus persica L. Batsch cvs. Royal Glory and Morettini No 2) with contrasting tissue firmness during their on-tree ripening was conducted. Such fruit were cold stored (0 °C) for 4 and 6 weeks, and subsequently transferred at 25 °C (shelf life) for up to 5 days and evaluated for quality attributes and cell wall physicochemical properties. Data were partly unexpected, since fruit of the soft cultivar (Morettini No 2) were characterized by lower exo- and endo-PG activity, lower amounts of ethylene evolution, as well as higher amounts of endogenous calcium bound in the cell wall compared to fruit of the firmer cultivar (Royal Glory). These differences may be attributed to the incidence of chilling injury symptoms, evident as loss of juiciness in Morettini No 2 fruit, while Royal Glory fruit were characterized by acceptable appearance and eating quality even after 6 weeks cold storage plus 5 days shelf life, as the fruit softened gradually without cell rupture. Overall results showed that no direct relationship between cell wall physicochemical properties and sensory attributes can be established, indicating the complexity of peach fruit ripening. Since fruit of both cultivars presented similar tissue firmness after 5 days shelf life an attempt to distinguish normal peach fruit softening from cell rupture-chilling injury also has been made in the current study.


2020 ◽  
Vol 21 (8) ◽  
pp. 2846 ◽  
Author(s):  
Hui Zhou ◽  
Lei Zhao ◽  
Qiurui Yang ◽  
Mohamed Hamdy Amar ◽  
Collins Ogutu ◽  
...  

Peach (Prunus persica) is a climacteric fruit with a relatively short shelf life due to its fast ripening or softening process. Here, we report the association of gene families encoding ethylene insensitive-3 like (EIL) and ethylene response factor (ERF) with fruit ripening in peach. In total, 3 PpEILs and 12 PpERFs were highly expressed in fruit, with the majority showing a peak of expression at different stages. All three EILs could activate ethylene biosynthesis genes PpACS1 and PpACO1. One out of the 12 PpERFs, termed PpERF.E2, is a homolog of ripening-associated ERFs in tomato, with a consistently high expression throughout fruit development and an ability to activate PpACS1 and PpACO1. Additionally, four subgroup F PpERFs harboring the EAR repressive motif were able to repress the PpACO1 promoter but could also activate the PpACS1 promoter. Promoter deletion assay revealed that PpEILs and PpERFs could participate in transcriptional regulation of PpACS1 through either direct or indirect interaction with various cis-elements. Taken together, these results suggested that all three PpEILs and PpERF.E2 are candidates involved in ethylene biosynthesis, and EAR motif-containing PpERFs may function as activator or repressor of ethylene biosynthesis genes in peach. Our study provides an insight into the roles of EILs and ERFs in the fruit ripening process.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shuanghong You ◽  
Ke Cao ◽  
Changwen Chen ◽  
Yong Li ◽  
Jinlong Wu ◽  
...  

AbstractQuantitative real-time PCR (qRT-PCR) has been emerged as an effective method to explore the gene function and regulatory mechanisms. However, selecting appropriate reference gene (s) is a prerequisite for obtaining accurate qRT-PCR results. Peach is one of important fruit in Rosaceae and is widely cultivated worldwide. In this study, to explore reliable reference gene (s) in peach with different types during fruit ripening and softening (S1–S4), nine candidate reference genes (EF-1α, GAPDH, TBP, UBC, eIF-4α, TUB-A, TUB-B, ACTIN, and HIS) were selected from the whole-genome data. Then, the expression levels of the nine selected genes were detected using qRT-PCR in three peach types, including ‘Hakuho’ (melting type), ‘Xiacui’ (stony hard type), ‘Fantasia’ and ‘NJC108’ (non-melting type) cultivars were detected using qRT-PCR. Four software (geNorm, NormFinder, BestKeeper and RefFinder) were applied to evaluate the expression stability of these candidate reference genes. Gene expression was characterized in different peach types during fruit ripening and softening stages. The overall performance of each candidate in all samples was evaluated. The Actin gene (ACTIN) was a suitable reference gene and displayed excellent stability in ‘Total’ set, ‘Hakuho’ samples, S3 and S4 fruit developmental stages. Ubiquitin C gene (UBC) showed the best stability in most independent samples, including ‘Fantasia’, ‘NJC108’, S2 sets. Elongation factor-1α gene (EF-1α) was the most unstable gene across the set of all samples, ‘NJC108’ and S2 sets, while showed the highest stability in ‘Xiacui’ samples. The stability of candidate reference genes was further verified by analyzing the relative expression level of ethylene synthase gene of Prunus persica (PpACS1) in fruit ripening and softening periods of ‘Hakuho’. Taken together, the results from this study provide a basis for future research on the mining of important functional genes, expression patterns and regulatory mechanisms in peach.


Cells ◽  
2018 ◽  
Vol 7 (7) ◽  
pp. 77 ◽  
Author(s):  
Yunpeng Cao ◽  
Dandan Meng ◽  
Yu Chen ◽  
Muhammad Abdullah ◽  
Qing Jin ◽  
...  

Ripening affects the nutritional contents and quality of fleshy fruits, and it plays an important role during the process of fruit development. Studies have demonstrated that ubiquitin-conjugating (UBC or E2) genes can regulate fruit ripening, but the characterization of UBCs in pear is not well documented. The recently published genome-wide sequences of Pyrus bretschneideri and Pyrus communis have allowed a comprehensive analysis of this important gene family in pear. Using bioinformatics approaches, we identified 83 (PbrUBCs) and 84 (PcpUBCs) genes from P. bretschneideri and P. communis, respectively, which were divided into 13 subfamilies. In total, 198 PbrUBC paralogous, 215 PcpUBC paralogous, and 129 orthologous gene pairs were detected. Some paralogous gene pairs were found to be distributed on the same chromosome, suggesting that these paralogs may be caused by tandem duplications. The expression patterns of most UBC genes were divergent between Pyrus bretschneideri and Pyrus communis during pear fruit development. Remarkably, the transcriptome data showed that UBC genes might play a more important role in fruit ripening for further study. This is the first report on the systematic analysis of two Pyrus UBC gene families, and these data will help further study the role of UBC genes in fruit development and ripening, as well as contribute to the functional verification of UBC genes in pear.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaobei Wang ◽  
Junren Meng ◽  
Li Deng ◽  
Yan Wang ◽  
Hui Liu ◽  
...  

Auxin and ethylene play critical roles in the ripening of peach (Prunus persica) fruit; however, the interaction between these two phytohormones is complex and not fully understood. Here, we isolated a peach ILR gene, PpILR1, which encodes an indole-3-acetic acid (IAA)-amino hydrolase. Functional analyses revealed that PpILR1 acts as a transcriptional activator of 1-amino cyclopropane-1-carboxylic acid synthase (PpACS1), and hydrolyzes auxin substrates to release free auxin. When Cys137 was changed to Ser137, PpILR1 failed to show hydrolase activity but continued to function as a transcriptional activator of PpACS1 in tobacco and peach transient expression assays. Furthermore, transgenic tomato plants overexpressing PpILR1 exhibited ethylene- and strigolactone-related phenotypes, including premature pedicel abscission, leaf and petiole epinasty, and advanced fruit ripening, which are consistent with increased expression of genes involved in ethylene biosynthesis and fruit ripening, as well as suppression of branching and growth of internodes (related to strigolactone biosynthesis). Collectively, these results provide novel insights into the role of IAA-amino acid hydrolases in plants, and position the PpILR1 protein at the junction of auxin and ethylene pathways during peach fruit ripening. These results could have substantial implications on peach fruit cultivation and storage in the future.


BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Bin Tan ◽  
Xiaodong Lian ◽  
Jun Cheng ◽  
Wenfang Zeng ◽  
Xianbo Zheng ◽  
...  

Abstract Background Ubiquitin ligases (E3) are the enzymes in the ubiquitin/26S proteasome pathway responsible for targeting proteins to the degradation pathway and play major roles in multiple biological activities. However, the E3 family and their functions are yet to be identified in the fruit of peach. Results In this study, genome-wide identification, classification and characterization of the E3 ligase genes within the genome of peach (Prunus persica) was carried out. In total, 765 E3 (PpE3) ligase genes were identified in the peach genome. The PpE3 ligase genes were divided into eight subfamilies according to the presence of known functional domains. The RBX subfamily was not detected in peach. The PpE3 ligase genes were not randomly distributed among the 8 chromosomes, with a greater concentration on the longer chromosomes. The primary mode of gene duplication of the PpE3 ligase genes was dispersed gene duplication (DSD). Four subgroups of the BTB subfamily never characterized before were newly identified in peach, namely BTBAND, BTBBL, BTBP and BTBAN. The expression patterns of the identified E3 ligase genes in two peach varieties that display different types of fruit softening (melting flesh, MF, and stony hard, SH) were analyzed at 4 different stages of ripening using Illumina technology. Among the 765 PpE3 ligase genes, 515 (67.3%) were expressed (FPKM > 1) in the fruit of either MF or SH during fruit ripening. In same-stage comparisons, 231 differentially expressed genes (DEGs) were identified between the two peach cultivars. The number of DEGs in each subfamily varied. Most DEGs were members of the BTB, F-box, U-box and RING subfamilies. PpE3 ligase genes predicted to be involved in ethylene, auxin, or ABA synthesis or signaling and DNA methylation were differentially regulated. Eight PpE3 ligase genes with possible roles in peach flesh texture and fruit ripening were discussed. Conclusions The results of this study provide useful information for further understanding the functional roles of the ubiquitin ligase genes in peach. The findings also provide the first clues that E3 ligase genes may function in the regulation of peach ripening.


2019 ◽  
Author(s):  
Bin Tan ◽  
Xiaodong Lian ◽  
Jun Cheng ◽  
Wenfang Zeng ◽  
Xianbo Zheng ◽  
...  

Abstract Background: Ubiquitin ligases (E3) are the enzymes in the ubiquitin/26S proteasome pathway responsible for targeting proteins to the degradation pathway and play major roles in multiple biological activities. However, the E3 family is still yet to be identified, and the functions of E3 ligase genes on fruit flesh are unknown in peach. Results: In this study, genome-wide identification, classification and characterization of the E3 ligase genes within the genome of peach (Prunus persica) was carried out. In total, 765 E3 (PpE3) ligase genes were identified in the peach genome. The PpE3 ligase genes were divided into eight subfamilies according to the presence of known functional domains. The RBX subfamily was not detected in peach. The PpE3 ligase genes were not randomly distributed among the 8 chromosomes, with a greater concentration on the longer chromosomes. The primary mode of gene duplication of the PpE3 ligase genes was dispersed gene duplication (DSD). Four subgroups of the BTB subfamily never characterized before were newly identified in peach, namely BTBAND, BTBBL, BTBP and BTBAN. The expression patterns of the identified E3 ligase genes in two peach varieties that display different types of fruit softening (melting flesh, MF, and stony hard, SH) were analyzed at 4 different stages of ripening using Illumina technology. Among the 765 PpE3 ligase genes, 515 (67.3%) were expressed (FPKM >1) in the fruit of either MF or SH during fruit ripening. In same-stage comparisons, 231 differentially expressed genes (DEGs) were identified between the two peach cultivars. The number of DEGs in each subfamily varied. Most DEGs were members of the BTB, F-box, U-box and RING subfamilies. PpE3 ligase genes predicted to be involved in ethylene, auxin, or ABA synthesis or signaling and DNA methylation were differentially regulated. Eight PpE3 ligase genes with possible roles in peach flesh texture and fruit ripening were discussed. Conclusions: The results of this study provide useful information for further understanding the functional roles of the ubiquitin ligase genes in peach. The findings also provide the first clues that E3 ligase genes may function in the regulation of peach ripening.


HortScience ◽  
2002 ◽  
Vol 37 (7) ◽  
pp. 1065-1068 ◽  
Author(s):  
Robert D. Belding ◽  
Gail R.W. Lokaj

`Biscoe' and `Encore' peach [Prunus persica (L.) Batsch] trees were treated in two years with AVG at 7, 14, or 21 days before first harvest (DBFH) or as a nontreated control (NTC). Fruit were harvested every 2 to 3 days based on observed initial yielding of fruit flesh and ground color. Fruit were further evaluated for maturity and quality based on the production of ethylene, ground color, diameter, flesh firmness, soluble sugars, and woolliness. Evaluations occurred 1 day after harvest and after 14 and 28 days in cold storage. AVG applications delayed early harvests of `Biscoe', but `Encore' harvests were not affected. Across all preharvest treatment timings, AVG reduced ethylene production by 64%. Ethylene production and fruit softening were most inhibited for fruit treated with AVG 7 DBFH. In this study, fruit treated with AVG demonstrated a significant negative correlation between fruit ethylene production and firmness. Average flesh firmness of fruit from AVG treatments were 11.8 Newtons greater than NTC fruit. Fruit treated 21 or 14 DBFH exhibited greener ground color than NTC fruit or fruit treated 7 DBFH. The NTC fruit had the highest ground color values, fruit treated 7 DBFH were intermediate, and fruit treated 21 or 14 DBFH had the lowest values for ground color. AVG has potential use as a management tool for controlling the timing of harvest and for allowing fruit to ripen more slowly and to hang longer on the tree, thus improving fruit size. In addition, AVG assists in maintaining the postharvest flesh firmness required to withstand handling during marketing. Chemical name used: aminoethoxyvinylglycine (AVG).


HortScience ◽  
1992 ◽  
Vol 27 (6) ◽  
pp. 626a-626
Author(s):  
Shulin Li ◽  
Preston K. Andrews

The activities of the fruit ripening enzymes cellulase, polygalacturonase (PG) and pectin methylesterase (PME) were detected during the development of sweet cherry (Prunus avium L.) fruit. Cellulase and PG activities of pericarp tissue increased 4-10 times between hypanthium abscission and harvest. PME activity remained high throughout this period of fruit development. There was a positive correlation between the anthocyanin content of the pericarp and both cellulase and PG activities. Concomitant with the increases in the activities of these ripening enzymes was a decrease in fruit firmness. The increases in cellulase and PG activities were checked following two-weeks storage at 10 C after harvest. The purification and characterization of the putative cellulase and PG enzymes will be discussed, together with attempts to chemically inhibit their activities and modify fruit softening.


Sign in / Sign up

Export Citation Format

Share Document