Uncertainties in the permittivity model for seawater in FASTEM and implications for the calibration/validation of microwave imagers

Author(s):  
Heather Lawrence ◽  
Niels Bormann ◽  
Stephen J. English
Keyword(s):  
2021 ◽  
Vol 13 (7) ◽  
pp. 1387
Author(s):  
Chao Li ◽  
Jinhai Zhang

The high-frequency channel of lunar penetrating radar (LPR) onboard Yutu-2 rover successfully collected high quality data on the far side of the Moon, which provide a chance for us to detect the shallow subsurface structures and thickness of lunar regolith. However, traditional methods cannot obtain reliable dielectric permittivity model, especially in the presence of high mix between diffractions and reflections, which is essential for understanding and interpreting the composition of lunar subsurface materials. In this paper, we introduce an effective method to construct a reliable velocity model by separating diffractions from reflections and perform focusing analysis using separated diffractions. We first used the plane-wave destruction method to extract weak-energy diffractions interfered by strong reflections, and the LPR data are separated into two parts: diffractions and reflections. Then, we construct a macro-velocity model of lunar subsurface by focusing analysis on separated diffractions. Both the synthetic ground penetrating radar (GPR) and LPR data shows that the migration results of separated reflections have much clearer subsurface structures, compared with the migration results of un-separated data. Our results produce accurate velocity estimation, which is vital for high-precision migration; additionally, the accurate velocity estimation directly provides solid constraints on the dielectric permittivity at different depth.


2017 ◽  
Vol 117 (1) ◽  
pp. 17001 ◽  
Author(s):  
Jianhua Wang ◽  
Junli Wang ◽  
Shengli Qi ◽  
Yiyi Sun ◽  
Guofeng Tian ◽  
...  

2018 ◽  
Author(s):  
Katrin Lonitz ◽  
Alan J. Geer

Abstract. Permittivity models for microwave frequencies of liquid water below 0 °C (supercooled liquid water) are poorly constrained due to limited laboratory experiments and observations, especially for high microwave frequencies. This uncertainty translates directly into errors in retrieved liquid water paths of up to 80 %. This study investigates the effect of different liquid water permittivity models on simulated brightness temperatures by using the all-sky assimilation framework of the Integrated Forecast System. Here, a model configuration with an improved representation of supercooled liquid water has been used. The comparison of five different permittivity models with the current one shows a small mean reduction in simulated brightness temperatures of at most 0.15 K at 92 GHz on a global monthly scale. During austral winter differences occur more prominently in the storm tracks of the southern hemisphere and in the Intertropical Convergence Zone with values of around 0.5 K to 1.5 K. For most permittivity models the fit to observations is slightly improved compared to the default one. The permittivity model by Rosenkranz (2015) is recommended to be used inside the observation operator RTTOV-SCATT for frequencies below 183 GHz.


Sign in / Sign up

Export Citation Format

Share Document