A Narrow Band Model Based on the Absorption Coefficient and its Application to the Calculation of Radiative Transfer in One-Dimensional Enclosures

Author(s):  
Annette S. Fisher ◽  
Sarma L. Rani
1998 ◽  
Vol 41 (14) ◽  
pp. 2227-2236 ◽  
Author(s):  
F. Liu ◽  
Ö.L. Gülder ◽  
G.J. Smallwood ◽  
Y. Ju

1999 ◽  
Vol 121 (1) ◽  
pp. 200-203 ◽  
Author(s):  
F. Liu

Three-dimensional non-grey gas radiation analyses were conducted using the statistical narrow-band model along with up-dated band parameters. The exact narrow-band averaged radiative transfer equation was solved using a ray-tracing method. Accurate numerical results were presented for non-grey real gas radiative transfer in a three-dimensional rectangular enclosure containing (i) an isothermal pure water vapor at 1000 K and 1 atm, (ii) an isothermal and inhomogeneous H2O/N2 mixture at 1000 K and 1 atm, and (iii) a nonisothermal and homogeneous mixture of CO2/H2O/N2 at 1 atm.


1994 ◽  
Vol 116 (1) ◽  
pp. 160-166 ◽  
Author(s):  
J. Liu ◽  
S. N. Tiwari

The Monte Carlo method (MCM) is applied to analyze radiative heat transfer in nongray gases. The nongray model employed is based on the statistical narrow band model with an exponential-tailed inverse intensity distribution. The amount and transfer of the emitted radiative energy in a finite volume element within a medium are considered in an exact manner. The spectral correlation between transmittances of two different segments of the same path in a medium makes the statistical relationship different from the conventional relationship that only provides the noncorrelated results for nongray analysis. Two features of the MCM that are different from other nongray numerical methods are discussed. The simplicity of the MCM is demonstrated by considering the case of radiative transfer between two reflecting walls. The results for the radiative dissipation distributions and the net radiative wall heat fluxes are obtained for uniform, parabolic, and boundary layer type temperature profiles, as well as for a parabolic concentration profile. They are compared with available results of other methods. Good agreements are found for all the cases considered.


2001 ◽  
Vol 124 (1) ◽  
pp. 26-29 ◽  
Author(s):  
S. P. Fuss ◽  
A. Hamins

The Planck mean absorption coefficient, ap, has been calculated for HBr, HCl, and HF over a temperature range from 300 K–2300 K using data from the 1996 edition of the HITRAN molecular database. Plots of ap versus temperature showed monotonically decreasing behavior over this temperature range, with peak values at 300 K of 45.9 (atm-m)−1, 5.3 (atm-m)−1, and 1.95 (atm-m)−1 for HF, HCl, and HBr, respectively. The magnitude of these values suggests that HBr, HCl, and HF can significantly impact calculations of radiative transfer in flames containing these species. Two sets of additional calculations were performed for CO to validate the methodology used for calculation of ap for HBr, HF, and HCl. In the first approach, which employed the narrow band model RADCAL, the calculation procedure was similar to that of the present calculations. The second approach utilized tabulated values of the integrated intensity for each CO band and an average value of the Planck function within each band. Results from the three methods showed general agreement. Polynomial expressions are provided as fits to ap as a function of temperature for HBr, HCl, HF, and CO.


2014 ◽  
Vol 628 ◽  
pp. 311-316
Author(s):  
Hua Xiang Zhou ◽  
Zheng Zhou ◽  
Jing Ping Liu

In order to obtain the radiation heat transfer theory and calculation methods, the movement of the gas particles, location, intensity, temperature, are researched in cylinder under different conditions with combustion system and the mode of heat transfer. Under high temperature conditions in the cylinder, the gas radiation heat transfer is researched in the complex heat transfer theory. A statistical correlation K narrow band model, a mean absorption coefficient, a gas line databases, by-line calculation method are found, through research and analysis emissivity, transmittance, absorption coefficient, typical models, mathematical equations, database, calculation methods. Examine the distribution performance of each database for different media concentration and temperature, a statistical narrow-band band parametric model accuracy is tested, using statistical narrow band model, the results of the use of by-line method. Research shows: selected spectral database, calculation method has a greater impact on the results. The research also shows the result coincides calculations based by-line HITEWP2010 database method, whether radiant heat or wall flux, statistical narrow band model. These are supplied to the internal combustion engine cylinder design.


Sign in / Sign up

Export Citation Format

Share Document