Soil horizon erodibility assessment in an area of Mexico susceptible to gully erosion

Author(s):  
M.J. Casabella-González ◽  
L. Borselli ◽  
J.V. García-Meza
Keyword(s):  
2015 ◽  
Vol 2 (2) ◽  
pp. 148-158
Author(s):  
Surianto

Spodosol soil of Typic Placorthod sub-group of East Barito District is one of the problem soils with the presence of hardpan layer, low fertility, low water holding capacity, acid reaction and it is not suitable for oil palm cultivation without any properly specific management of land preparation and implemented best agronomic practices. A study was carried out to evaluate the soil characteristic of a big hole (A profile) and no big hole (B profile) system and comparative oil palm productivity among two planting systems. This study was conducted in Spodosol soil at oil palm plantation (coordinate X = 0281843 and Y = 9764116), East Barito District, Central Kalimantan Province on February 2014, by surveying of placic and ortstein depth and observing soil texture and chemical properties of 2 (two) oil palm's soil profiles that have been planted in five years. Big hole system of commercial oil palm field planting on the Spodosol soil area was designed for the specific purpose of minimizing the potential of a negative effect of shallow effective planting depth for oil palms growing due to the hardpan layer (placic and ortstein) presence as deep as 0.25 - 0.50 m. The big hole system is a planting hole type which was vertical-sided with 2.00 m x 1.50 m on top and bottom side and 3.00 m depth meanwhile the 2:1 drain was vertical-sided also with 1.50 m depth and 300 m length. Oil palm production was recorded from the year 2012 up to 2014. Results indicated that the fractions both big hole profile (A profile) and no big hole profile (B profile) were dominated by sands ranged from 60% to 92% and the highest sands content of non-big hole soil profile were found in A and E horizons (92%). Better distribution of sand and clay fractions content in between layers of big hole soil profiles of A profile sample is more uniform compared to the B profile sample. The mechanical holing and material mixing of soil materials of A soil profile among the upper and lower horizons i.e. A, E, B and C horizons before planting that resulted a better distribution of both soil texture (sands and clay) and chemical properties such as acidity value (pH), C-organic, N, C/N ratio, CEC, P-available and Exchangeable Bases. Investigation showed that exchangeable cations (Ca, Mg, K), were very low in soil layers (A profile) and horizons (B profile) investigated. The low exchangeable cations due to highly leached of bases to the lower layers and horizons. Besides, the palm which was planted on the big hole system showed good adaptation and response positively by growing well of tertiary and quaternary roots that the roots were penetrable into deeper rooting zone as much as >1.00 m depth. The roots can grow well and penetrate much deeper in A profile compared to the undisturbed hardpan layer (B profile). The FFB (fresh fruit bunches) production of the non-big hole block was higher than the big hole block for the first three years of production. This might be due to the high variation of monthly rainfall in-between years of observation from 2009 to 2014. Therefore, the hardness of placic and ortstein as unpenetrable agents by roots and water to prevent water loss and retain the water in the rhizosphere especially in the drier weather. In the high rainfall condition, the 2:1 drain to prevent water saturation in the oil palm rhizosphere by moving some water into the drain. Meanwhile, the disturbed soil horizon (big hole area) was drier than un disturbance immediately due to water removal to deeper layers. We concluded that both big hole and 2:1 drain are a suitable technology for Spodosol soil land especially in preparing palms planting to minimize the negative effect of the hardpan layer for oil palm growth.


2016 ◽  
Author(s):  
Jamie Kincheloe ◽  
◽  
A. Nandi ◽  
Ingrid Luffman

Water ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1631
Author(s):  
Artyom V. Gusarov

Contemporary trends in cultivated land and their influence on soil/gully erosion and river suspended sediment load were analyzed by various landscape zones within the most populated and agriculturally developed part of European Russia, covering 2,222,390 km2. Based on official statistics from the Russian Federation and the former Soviet Union, this study showed that after the collapse of the Soviet Union in 1991, there was a steady downward trend in cultivated land throughout the study region. From 1970–1987 to 2005–2017, the region lost about 39% of its croplands. Moreover, the most significant relative reduction in cultivated land was noted in the forest zone (south taiga, mixed and broadleaf forests) and the dry steppes and the semi-desert of the Caspian Lowland—about 53% and 65%, respectively. These territories are with climatically risky agriculture and less fertile soils. There was also a widespread reduction in agricultural machinery on croplands and livestock on pastures of the region. A decrease in soil/gully erosion rates over the past decades was also revealed based on state hydrological monitoring data on river suspended sediment load as one of the indicators of the temporal variability of erosion intensity in river basins and the published results of some field research in various parts of the studied landscape zones. The most significant reduction in the intensity of erosion and the load of river suspended sediment was found in European Russia’s forest-steppe zone. This was presumably due to a favorable combination of the above changes in land cover/use and climate change.


1984 ◽  
Vol 13 (2) ◽  
pp. 247-251 ◽  
Author(s):  
W. N. Beyer ◽  
G. W. Miller ◽  
E. J. Cromartie
Keyword(s):  

2020 ◽  
Vol 17 (2) ◽  
pp. 281-304 ◽  
Author(s):  
Sophie Casetou-Gustafson ◽  
Harald Grip ◽  
Stephen Hillier ◽  
Sune Linder ◽  
Bengt A. Olsson ◽  
...  

Abstract. Reliable and accurate methods for estimating soil mineral weathering rates are required tools in evaluating the sustainability of increased harvesting of forest biomass and assessments of critical loads of acidity. A variety of methods that differ in concept, temporal and spatial scale, and data requirements are available for measuring weathering rates. In this study, causes of discrepancies in weathering rates between methods were analysed and were classified as being either conceptual (inevitable) or random. The release rates of base cations (BCs; Ca, Mg, K, Na) by weathering were estimated in podzolised glacial tills at two experimental forest sites, Asa and Flakaliden, in southern and northern Sweden, respectively. Three different methods were used: (i) historical weathering since deglaciation estimated by the depletion method, using Zr as the assumed inert reference; (ii) steady-state weathering rate estimated with the PROFILE model, based on quantitative analysis of soil mineralogy; and (iii) BC budget at stand scale, using measured deposition, leaching and changes in base cation stocks in biomass and soil over a period of 12 years. In the 0–50 cm soil horizon historical weathering of BCs was 10.6 and 34.1 mmolc m−2 yr−1, at Asa and Flakaliden, respectively. Corresponding values of PROFILE weathering rates were 37.1 and 42.7 mmolc m−2 yr−1. The PROFILE results indicated that steady-state weathering rate increased with soil depth as a function of exposed mineral surface area, reaching a maximum rate at 80 cm (Asa) and 60 cm (Flakaliden). In contrast, the depletion method indicated that the largest postglacial losses were in upper soil horizons, particularly at Flakaliden. With the exception of Mg and Ca in shallow soil horizons, PROFILE produced higher weathering rates than the depletion method, particularly of K and Na in deeper soil horizons. The lower weathering rates of the depletion method were partly explained by natural and anthropogenic variability in Zr gradients. The base cation budget approach produced significantly higher weathering rates of BCs, 134.6 mmolc m−2 yr−1 at Asa and 73.2 mmolc m−2 yr−1 at Flakaliden, due to high rates estimated for the nutrient elements Ca, Mg and K, whereas weathering rates were lower and similar to those for the depletion method (6.6 and 2.2 mmolc m−2 yr−1 at Asa and Flakaliden). The large discrepancy in weathering rates for Ca, Mg and K between the base cation budget approach and the other methods suggests additional sources for tree uptake in the soil not captured by measurements.


2005 ◽  
Vol 35 (9) ◽  
pp. 2178-2187 ◽  
Author(s):  
J C Neff ◽  
J W Harden ◽  
G Gleixner

Boreal ecosystems contain a substantial fraction of the earth's soil carbon stores and are prone to frequent and severe wildfires. In this study, we examine changes in element and organic matter stocks due to a 1999 wildfire in Alaska. One year after the wildfire, burned soils contained between 1071 and 1420 g/m2 less carbon than unburned soils. Burned soils had lower nitrogen than unburned soils, higher calcium, and nearly unchanged potassium, magnesium, and phosphorus stocks. Burned surface soils tended to have higher concentrations of noncombustible elements such as calcium, potassium, magnesium, and phosphorus compared with unburned soils. Combustion losses of carbon were mostly limited to surface dead moss and fibric horizons, with no change in the underlying mineral horizons. Burning caused significant changes in soil organic matter structure, with a 12% higher ratio of carbon to combustible organic matter in surface burned horizons compared with unburned horizons. Pyrolysis gas chromatography – mass spectroscopy also shows preferential volatilization of polysaccharide-derived organic matter and enrichment of lignin- and lipid-derived compounds in surface soils. The chemistry of deeper soil layers in burned and unburned sites was similar, suggesting that immediate fire impacts were restricted to the surface soil horizon.


Sign in / Sign up

Export Citation Format

Share Document