Glenoid version: How to measure it? Validity of different methods in two-dimensional computed tomography scans

2010 ◽  
Vol 19 (8) ◽  
pp. 1230-1237 ◽  
Author(s):  
Dominique M. Rouleau ◽  
Jacob F. Kidder ◽  
Juan Pons-Villanueva ◽  
Savvas Dynamidis ◽  
Michael Defranco ◽  
...  
2019 ◽  
Vol 12 (1) ◽  
pp. 31-37
Author(s):  
Dave R Shukla ◽  
Richard J McLaughlin ◽  
Julia Lee ◽  
Ngoc Tram V Nguyen ◽  
Joaquin Sanchez-Sotelo

Background Preoperative planning software has been developed to measure glenoid version, glenoid inclination, and humeral head subluxation on computed tomography (CT) for shoulder arthroplasty. However, most studies analyzing the effect of glenoid positioning on outcome were done prior to the introduction of planning software. Thus, measurements obtained from the software can only be extrapolated to predict failure provided they are similar to classic measurements. The purpose of this study was to compare measurements obtained using classic manual measuring techniques and measurements generated from automated image analysis software. Methods Ninety-five two-dimensional computed tomography scans of shoulders with primary glenohumeral osteoarthritis were measured for version according to Friedman method, inclination according to Maurer method, and subluxation according to Walch method. DICOM files were loaded into an image analysis software (Blueprint, Wright Medical) and the output was compared with values obtained manually using a paired sample t-test. Results Average manual measurements included 13.8° version, 13.2° inclination, and 56.2% subluxation. Average image analysis software values included 17.4° version (3.5° difference, p < 0.0001), 9.2° inclination (3.9° difference, p < 0.001), and 74.2% for subluxation (18% difference, p < 0.0001). Conclusions Glenoid version and inclination values from the software and manual measurement on two-dimensional computed tomography were relatively similar, within approximately 4°. However, subluxation measurements differed by approximately 20%.


2020 ◽  
Vol 23 (2) ◽  
pp. 71-79
Author(s):  
Hyungsuk Kim ◽  
Chang Hyun Yoo ◽  
Soo Bin Park ◽  
Hyun Seok Song

Background: The glenoid version of the shoulder joint correlates with the stability of the glenohumeral joint and the clinical results of total shoulder arthroplasty. We sought to analyze and compare the glenoid version measured by traditional axial two-dimensional (2D) computed tomography (CT) and three-dimensional (3D) reconstructed images at different levels.Methods: A total of 30 cases, including 15 male and 15 female patients, who underwent 3D shoulder CT imaging was randomly selected and matched by sex consecutively at one hospital. The angular difference between the scapular body axis and 2D CT slice axis was measured. The glenoid version was assessed at three levels (midpoint, upper one-third, and center of the lower circle of the glenoid) using Friedman’s method in the axial plane with 2D CT images and at the same level of three different transverse planes using a 3D reconstructed image. Results: The mean difference between the scapular body axis on the 3D reconstructed image and the 2D CT slice axis was 38.4°. At the level of the midpoint of the glenoid, the measurements were 1.7° ± 4.9° on the 2D CT images and −1.8° ± 4.1° in the 3D reconstructed image. At the level of the center of the lower circle, the measurements were 2.7° ± 5.2° on the 2D CT images and −0.5° ± 4.8° in the 3D reconstructed image. A statistically significant difference was found between the 2D CT and 3D reconstructed images at all three levels. Conclusions: The glenoid version is measured differently between axial 2D CT and 3D reconstructed images at three levels. Use of 3D reconstructed imaging can provide a more accurate glenoid version profile relative to 2D CT. The glenoid version is measured differently at different levels.


2015 ◽  
Vol 26 (4) ◽  
pp. e311-e315 ◽  
Author(s):  
Cassetta Michele ◽  
Altieri Federica ◽  
Di Giorgio Roberto ◽  
Silvestri Alessandro

2003 ◽  
Vol 12 (5) ◽  
pp. 493-496 ◽  
Author(s):  
Richard W Nyffeler ◽  
Bernhard Jost ◽  
Christian W.A Pfirrmann ◽  
Christian Gerber

2020 ◽  
Vol 23 (3) ◽  
pp. 119-124
Author(s):  
Chang-Hyuk Choi ◽  
Hee-Chan Kim ◽  
Daewon Kang ◽  
Jun-Young Kim

Background: This study was performed to compare glenoid version and inclination measured using two-dimensional (2D) images from computed tomography (CT) scans or three-dimensional (3D) reconstructed bone models.Methods: Thirty patients who had undergone conventional CT scans were included. Two orthopedic surgeons measured glenoid version and inclination three times on 2D images from CT scans (2D measurement), and two other orthopedic surgeons performed the same measurements using 3D reconstructed bone models (3D measurement). The 3D-reconstructed bone models were acquired and measured with Mimics and 3-Matics (Materialise).Results: Mean glenoid version and inclination in 2D measurements were –1.705º and 9.08º, respectively, while those in 3D measurements were 2.635º and 7.23º. The intra-observer reliability in 2D measurements was 0.605 and 0.698, respectively, while that in 3D measurements was 0.883 and 0.892. The inter-observer reliability in 2D measurements was 0.456 and 0.374, respectively, while those in 3D measurements was 0.853 and 0.845.Conclusions: The difference between 2D and 3D measurements is not due to differences in image data but to the use of different tools. However, more consistent results were obtained in 3D measurement. Therefore, 3D measurement can be a good alternative for measuring glenoid version and inclination.


2009 ◽  
Vol 117 (3) ◽  
pp. 300-305 ◽  
Author(s):  
Olivier J. C. van Vlijmen ◽  
Thomas J. J. Maal ◽  
Stefaan J. Bergé ◽  
Ewald M. Bronkhorst ◽  
Christos Katsaros ◽  
...  

2019 ◽  
pp. 175857321988882
Author(s):  
Sarav S Shah ◽  
Shawn Sahota ◽  
Patrick J Denard ◽  
Matthew T Provencher ◽  
Bradford O Parsons ◽  
...  

Background Two techniques exist from which all 3D preoperative planning software for total shoulder arthroplasty are based. One technique is based on measurements constructed on the mid-glenoid and scapular landmarks (Landmark). The second is an automated system using a best-fit sphere technique (Automated). The purpose was to compare glenoid measurements from the two techniques against a control computed tomography-derived 3D printed scapula. Methods Computed tomography scans of osteoarthritic shoulders of 20 patients undergoing primary total shoulder arthroplasty were analyzed with both 3D planning software techniques. Measurements from a 3D printed scapula (Scapula) from the true 3D computed tomography scan served as controls. Glenoid version and inclination measurements from each group were blinded and reviewed. Results In 65% (Automated) and 45% (Landmark) of cases, either inclination or version varied by 5° or more versus 3D printed scapula. Significant variability in version differences compared to the scapula group existed (p = 0.007). Glenoid version from the Scapula = 13.0° ± 10.6°, Automated = 15.0° ± 13.9°, and Landmark = 12.2° ± 7.8°. Inclination from Scapula = 5.4° ± 7.9°, Automated = 6.1° ± 12.6°, and Landmark = 6.2° ± 9.1°. Discussion A high percentage of cases showed discrepancies in glenoid inclination and version values from both techniques. Surgeons should be aware that regardless of software technique, there is variability compared to measurements from a control 3D computed tomography printed scapula.


Sign in / Sign up

Export Citation Format

Share Document