Mesoproterozoic–Neoproterozoic transition: Geochemistry, provenance and tectonic setting of clastic sedimentary rocks on the SE margin of the Yangtze Block, South China

2007 ◽  
Vol 29 (5-6) ◽  
pp. 637-650 ◽  
Author(s):  
Xu Deru ◽  
Gu Xuexiang ◽  
Li Pengchun ◽  
Chen Guanghao ◽  
Xia Bin ◽  
...  
Author(s):  
Bingshuang Zhao ◽  
Xiaoping Long ◽  
Jin Luo ◽  
Yunpeng Dong ◽  
Caiyun Lan ◽  
...  

The crustal evolution of the Yangtze block and its tectonic affinity to other continents of Rodinia and subsequent Gondwana have not been well constrained. Here, we present new U-Pb ages and Hf isotopes of detrital zircons from the late Neoproterozoic to early Paleozoic sedimentary rocks in the northwestern margin of the Yangtze block to provide critical constraints on their provenance and tectonic settings. The detrital zircons of two late Neoproterozoic samples have a small range of ages (0.87−0.67 Ga) with a dominant age peak at 0.73 Ga, which were likely derived from the Hannan-Micangshan arc in the northwestern margin of the Yangtze block. In addition, the cumulative distribution curves from the difference between the depositional age and the crystalline age (CA−DA) together with the mostly positive εHf(t) values of these zircon crystals (−6.8 to +10.7, ∼90% zircon grains with εHf[t] > 0) suggest these samples were deposited in a convergent setting during the late Neoproterozoic. In contrast, the Cambrian−Silurian sediments share a similar detrital zircon age spectrum that is dominated by Grenvillian ages (1.11−0.72 Ga), with minor late Paleoproterozoic (ca. 2.31−1.71 Ga), Mesoarchean to Neoarchean (3.16−2.69 Ga), and latest Archean to early Paleoproterozoic (2.57−2.38 Ga) populations, suggesting a significant change in the sedimentary provenance and tectonic setting from a convergent setting after the breakup of Rodinia to an extensional setting during the assembly of Gondwana. However, the presence of abundant Grenvillian and Neoarchean ages, along with their moderately to highly rounded shapes, indicates a possible sedimentary provenance from exotic continental terrane(s). Considering the potential source areas around the Yangtze block when it was a part of Rodinia or Gondwana, we suggest that the source of these early Paleozoic sediments had typical Gondwana affinities, such as the Himalaya, north India, and Tarim, which is also supported by their stratigraphic similarity, newly published paleomagnetic data, and tectono-thermal events in the northern fragments of Gondwana. This implies that after prolonged subduction in the Neoproterozoic, the northwestern margin of the Yangtze block began to be incorporated into the assembly of Gondwana and then accept sediments from the northern margin of Gondwanaland in a passive continental margin setting.


1993 ◽  
Vol 30 (12) ◽  
pp. 2273-2282 ◽  
Author(s):  
J. Brendan Murphy ◽  
Deborah L. MacDonald

The Late Proterozoic (ca. 618–610 Ma) Georgeville Group of northern mainland Nova Scotia lies within the Avalon Composite Terrane and consists of subgreenschist- to greenschist-facies mafic and felsic volcanic rocks overlain by volcaniclastic turbidites that were deposited in an ensialic basin within a rifted volcanic arc. Geochronological data indicate that the volcanic and sedimentary rocks are coeval. The geochemical and isotopic signatures of the sedimentary rocks are attributed to erosion of the coeval Avalonian volcanic rocks that flank the basin and are consistent with synorogenic deposition. There is no evidence of significant chemical contribution from Avalonian basement.Knowledge of the tectonic setting facilitates the testing of published geochemical discriminant diagrams for clastic sedimentary rocks. Discrimination diagrams using ratios such as K2O/Na2O and Al2O3/(CaO + Na2O) give inconclusive results, probably due to elemental mobility during secondary processes. Plots involving MgO, TiO2, and Fe2O3 detect the chemical contribution of mafic detritus, give much tighter clusters of data, and plot between Aleutian- and Cascade-type arc-derived sediments, suggesting a moderate thickness of continental crust beneath the arc.The arc-related signature of the Georgeville sedimentary rocks is clearly recognizable on ternary plots involving inter-element ratios of high field strength elements (e.g., Ti–Y–Zr, Nb–Y–Zr, and Hf–Ta–Th) in which the samples plot as mixing trends between mafic and felsic end members. Diagrams of this type may have widespread application to tectonic discrimination of sedimentary rocks because in most suites these ratios are relatively insensitive to sedimentary and metamorphic processes.


Sign in / Sign up

Export Citation Format

Share Document