Reassessment of the age and depositional environments of the Eocene Çayraz Formation, a reference unit for Tethyan larger benthic foraminifera (Haymana Basin, central Turkey)

2020 ◽  
Vol 193 ◽  
pp. 104304
Author(s):  
Ercan Özcan ◽  
Aynur Hakyemez ◽  
Attila Çiner ◽  
Aral I. Okay ◽  
Mohamed Soussi ◽  
...  
GeoArabia ◽  
2008 ◽  
Vol 13 (1) ◽  
pp. 59-84 ◽  
Author(s):  
Jochen Kuss ◽  
Mohamed A. Boukhary

ABSTRACT The upper Oligocene Wadi Arish Formation is composed of a carbonate-dominated succession at Gebel Risan Aneiza (Sinai). The 77-m-thick unit disconformably overlies Jurassic to lower Cretaceous carbonates and is subdivided into three members, comprising six lithofacies units. The lower Wadi Arish member contains three units, a gypsiferous sandstone unit (Oa), overlain by two limestone units (Ob and Oc). The middle Wadi Arish member is represented by a conspicuous marl unit (Od) that is overlain by two upper limestone units (Oe and Of) of the upper Wadi Arish member. We discuss the euphotic subtidal depositional environments in conjunction with macro- and microfacies characteristics. Six microfacies types are defined, dominated by grain associations of rhodoliths, larger benthic foraminifera (rotaliids), corallinaceans, bivalves, peloids, few corals, and bryozoans. They characterize rhodalgal associations, common in non-tropical warm-temperate settings. Biostratigraphy is based on larger foraminifera. The middle Wadi Arish member corresponds with SB 23 (Chattian) and may correlate with Pg50, a regional maximum flooding surface. Our sequence stratigraphic interpretations define a late lowstand to early transgressive systems tract (lower Wadi Arish member), a late transgressive systems tract (middle Wadi Arish member), while the upper Wadi Arish member reflects highstand conditions. The paleogeographic setting and sequence stratigraphic interpretation of this unique upper Oligocene outcrop is placed in context of the northeast African-Arabian region.


1988 ◽  
Vol 62 (01) ◽  
pp. 1-8 ◽  
Author(s):  
Ronald E. Martin

The utility of benthic foraminifera in bathymetric interpretation of clastic depositional environments is well established. In contrast, bathymetric distribution of benthic foraminifera in deep-water carbonate environments has been largely neglected. Approximately 260 species and morphotypes of benthic foraminifera were identified from 12 piston core tops and grab samples collected along two traverses 25 km apart across the northern windward margin of Little Bahama Bank at depths of 275-1,135 m. Certain species and operational taxonomic groups of benthic foraminifera correspond to major near-surface sedimentary facies of the windward margin of Little Bahama Bank and serve as reliable depth indicators. Globocassidulina subglobosa, Cibicides rugosus, and Cibicides wuellerstorfi are all reliable depth indicators, being most abundant at depths >1,000 m, and are found in lower slope periplatform aprons, which are primarily comprised of sediment gravity flows. Reef-dwelling peneroplids and soritids (suborder Miliolina) and rotaliines (suborder Rotaliina) are most abundant at depths <300 m, reflecting downslope bottom transport in proximity to bank-margin reefs. Small miliolines, rosalinids, and discorbids are abundant in periplatform ooze at depths <300 m and are winnowed from the carbonate platform. Increased variation in assemblage diversity below 900 m reflects mixing of shallow- and deep-water species by sediment gravity flows.


2021 ◽  
Vol 70 ◽  
pp. 100468
Author(s):  
Vasiliki-Grigoria Dimou ◽  
Olga Koukousioura ◽  
Margarita D. Dimiza ◽  
Maria V. Triantaphyllou ◽  
György Less ◽  
...  

2020 ◽  
pp. 57-67
Author(s):  
Felix Schlagintweit ◽  
Koorosh Rashidi

new larger benthic foraminifera is described as Broeckinella hensoni from the upper Maastrichtian Tar-bur Formation of SW Iran (Zagros Zone). In comparison to the type species of the genus, Broeckinella arabica Henson, which also occurs in the Tarbur Formation, the new species has distinctly larger dimensions (e.g., size and thickness of test, chamber height). The first record of a microspheric specimen of B. arabica shows previously unrecorded annular chambers in the final test stage. Therefore, the generic diagnosis is herein emended. In the Tarbur Formation, both B. hensoni n. sp. and B. arabica occur in foraminiferal-algal wackestones. However, B. arabica occurs in a wider range of microfacies, including packstones and grainstones. It is assumed that Broeckinella originated in the Upper Cretaceous with Broeckinella neumannae Gendrot. The upper Albian Broeckinella aragonensis Peybernès is herein transferred to the porcellaneous genus Peneroplis Montfort.


Sign in / Sign up

Export Citation Format

Share Document