A refined approach for quantitative kinematic vorticity number estimation using microstructures

2021 ◽  
pp. 104459
Author(s):  
Riccardo GRAZIANI ◽  
Kyle P. LARSON ◽  
Richard D. LAW ◽  
V.A.N.I.E.R. Marc-Antoine ◽  
James R. THIGPEN
Keyword(s):  
2009 ◽  
Vol 31 (11) ◽  
pp. 1322-1339 ◽  
Author(s):  
Scott E. Johnson ◽  
Hendrik J. Lenferink ◽  
Nancy A. Price ◽  
Jeffrey H. Marsh ◽  
Peter O. Koons ◽  
...  
Keyword(s):  

2016 ◽  
Vol 59 (5) ◽  
pp. 795-806 ◽  
Author(s):  
YangWei Liu ◽  
Hao Yan ◽  
Le Fang ◽  
LiPeng Lu ◽  
QiuShi Li ◽  
...  

2011 ◽  
Vol 148 (5-6) ◽  
pp. 1009-1017 ◽  
Author(s):  
ALI FAGHIH ◽  
KHALIL SARKARINEJAD

AbstractThis paper presents quantitative data on the finite strain, quartz crystal fabric, geometry of flow and deformation temperatures in deformed quartzite samples to characterize the ductile deformation along the thrust sheets constituting the Sanandaj–Sirjan Metamorphic Belt within the Zagros Mountains of Iran. The results of this study emphasize the heterogeneous nature of deformation in this belt, showing a spatial variation in strain magnitude and in degree of non-coaxiality. A dominant top-to-the-SE sense of shear is indicated by the asymmetry of microstructures and quartz c-axis fabrics. Quartz c-axis opening angles suggest deformation temperatures range between 435° ± 50°C and 510° ± 50°C, which yield greenschist to amphibolite facies conditions during the ductile deformation. Mean kinematic vorticity number (Wm) measured in the quartzite samples ranges between 0.6 and 0.9 with an average of 0.76, which indicates that extrusion of the metamorphic rocks of the region was facilitated by a significant component of pure shear strain. Traced towards the basal thrust of the Zagros Thrust System from northeast to southwest, the quartz grain fabrics change from asymmetric cross-girdle fabrics in the internal part of the deformation zone to an asymmetric single-girdle fabric at distances close to the basal thrust. This variation may depend on the structural depth and on the geometry of the ductile deformation zone. The observed increase in strain and vorticity within the study area is comparable with patterns recorded within metamorphic rock extrusions within other orogens in the world.


Geology ◽  
2009 ◽  
Vol 37 (12) ◽  
pp. 1075-1078 ◽  
Author(s):  
S. E. Johnson ◽  
H. J. Lenferink ◽  
J. H. Marsh ◽  
N. A. Price ◽  
P. O. Koons ◽  
...  

2018 ◽  
Vol 111 (2) ◽  
pp. 171-179
Author(s):  
Pitsanupong Kanjanapayont ◽  
Peekamon Ponmanee ◽  
Bernhard Grasemann ◽  
Urs Klötzli ◽  
Prayath Nantasin

AbstractThe NW–trending Three Pagodas shear zone exposes a high–grade metamorphic complex named Thabsila gneiss in the Kanchanaburi region, western Thailand. The quartz mylonites within this strike–slip zone were selected for strain analysis. 2–dimensional strain analysis indicates that the averaged strain ratio (Rs) for the lower greenschist facies increment of XZ– plane is Rs = 1.60–1.97 by using the Fry’s method. Kinematic vorticity analysis of the quartz mylonites in the shear zone showed that the mean kinematic vorticity number of this increment is Wk = 0.75–0.99 with an average at 0.90 ±0.07. The results implied that the quartz mylonites within the Three Pagodas shear zone have a dominant simple shear component of about 72% with a small pure shear component. A sinistral shear sense is indicated by kinematic indicators from macro– to micro–scale. We conclude that the Three Pagodas shear zone deformed in the process of sinstral shear–dominated transpression, which is similar to the Mae Ping shear zone in the north.


2021 ◽  
Author(s):  
Salim Birkan Bayrak ◽  
Alp Ünal ◽  
Işıl Nur Güraslan ◽  
Ömer Kamacı ◽  
Erdinç Yiğitbaş ◽  
...  

<p>Marmara Granitoid (MG) is an E-W trending sill-like magmatic body exposed in the center of the Marmara Island, NW Anatolia, Turkey. MG is lower Eocene in age and was concordantly emplaced into metamorphic basement rocks of Saraylar Marble and Erdek Complex. It is represented by a deformed granodiorite which widely displays protomylonitic-mylonitic textures with prominent foliation and lineation. Foliation planes display a mean dip direction-angle of 335/29 and mineral stretching lineations show mean trend-plunge of 286/34. Mica-fishes, rotated porphyroclasts and micro-faults are commonly observed and serve as shear gauges pointing out to a dextral movement. Mineral deformation thermometers such as myrmekite development, chessboard extinction, grain boundary migration (GBM), sub-grain rotation recrystallization (SGR), and bulging recrystallization (BLG) in quartz crystals indicate that solid-state deformation of the MG has experienced a high-temperature ductile deformation and superimposed ductile to brittle deformation.</p><p>Three-dimensional strain ellipsoid measurements are investigated on the MG in order to determine the relative amounts of pure shear and simple shear deformation and the mean kinematic vorticity number (W<sub>m</sub>). The image processing of quartz grains is used as strain markers to obtain the three-dimensional best-fit ellipsoids. The results show that, Lode’s ratio (ν) of the samples change between -0.010 and -0.650 and Flinn’s k-values range from 1.026 to 11.157 indicating to a general constrictional (prolate) deformation. The calculated kinematic vorticity numbers change between 0.429 and 0.958 which show that shear deformation of MG is mostly dominated by simple shear. All of these micro and meso structural properties and three-dimensional strain and kinematic analyses collectively suggest that MG has experienced a dextral transtensional deformation.</p>


Sign in / Sign up

Export Citation Format

Share Document