Reference priors via α-divergence for a certain non-regular model in the presence of a nuisance parameter

2021 ◽  
Vol 213 ◽  
pp. 162-178 ◽  
Author(s):  
Shintaro Hashimoto
2019 ◽  
Author(s):  
◽  
Chetkar Jha

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT REQUEST OF AUTHOR.] Bayesian analysis is a principled approach, which makes inference about the parameter, by combining the information gained from the data and the prior belief about the parameter. There's no convergence on the choice of priors, and often different motivations for prior lead to different areas of study in Bayesian statistics. This work is motivated by two such choices, namely: reference priors and nonparametric priors. Reference priors arise out of the need to specify priors in a non-subjective manner, i.e. objective manner. Reference priors maximize the amount of information gained from the data about the parameter, in information theoretical sense. The appeal of reference priors lies in the fact that it has nice frequentist properties even for small sample size and often avoids marginalization paradoxes in Bayesian analysis. However, reference prior algorithms are typically available when the posterior is asymptotically normal and Fisher's information matrix is well-defined. In statistical parlance, such models are called regular case or regular model. Recently, Berger et al. (2009) [1] proposed a general expression of reference prior for single continuous parameter model, which is applicable for both regular and non-regular case. Motivated by Berger et al. (2009) [1], we explore reference prior methodology for a general model. Specifically, we derive expression of reference prior for single continuous parameter truncated exponential family and a general expression of conditional reference prior for multi group continuous parameter model. Furthermore, we demonstrate the usefulness of our work by deriving reference priors for models which have no known existing reference priors. We also extend Datta and Ghosh (1996) [2]'s invariance result for reference prior of regular model to general model. Nonparametric priors arise out of the need to specify priors over a large support.


1981 ◽  
Vol 46 (6) ◽  
pp. 1433-1438
Author(s):  
Jan Vřešťál

The conditions of the existence of extreme on the concentration dependences of absolute temperature (x are mole fractions) T = Tα(xkα) and T = Tβ(xkβ) denoting equilibrium between two binary regular solutions are generally developed under two assumptions: 1) Free enthalpy change of pure components k = i, j at transition from phase α to β is a linear function of temperature. 2) Concentration dependence of excess free enthalpy (identical with enthalpy) of solutions α and β, respectively, is described in regular model by one concentration and temperature independent parameter for each individual phase.


2020 ◽  
Vol 499 (3) ◽  
pp. 4054-4067
Author(s):  
Steven Cunnington ◽  
Stefano Camera ◽  
Alkistis Pourtsidou

ABSTRACT Potential evidence for primordial non-Gaussianity (PNG) is expected to lie in the largest scales mapped by cosmological surveys. Forthcoming 21 cm intensity mapping experiments will aim to probe these scales by surveying neutral hydrogen (H i) within galaxies. However, foreground signals dominate the 21 cm emission, meaning foreground cleaning is required to recover the cosmological signal. The effect this has is to damp the H i power spectrum on the largest scales, especially along the line of sight. Whilst there is agreement that this contamination is potentially problematic for probing PNG, it is yet to be fully explored and quantified. In this work, we carry out the first forecasts on fNL that incorporate simulated foreground maps that are removed using techniques employed in real data. Using an Monte Carlo Markov Chain analysis on an SKA1-MID-like survey, we demonstrate that foreground cleaned data recovers biased values [$f_{\rm NL}= -102.1_{-7.96}^{+8.39}$ (68 per cent CL)] on our fNL = 0 fiducial input. Introducing a model with fixed parameters for the foreground contamination allows us to recover unbiased results ($f_{\rm NL}= -2.94_{-11.9}^{+11.4}$). However, it is not clear that we will have sufficient understanding of foreground contamination to allow for such rigid models. Treating the main parameter $k_\parallel ^\text{FG}$ in our foreground model as a nuisance parameter and marginalizing over it, still recovers unbiased results but at the expense of larger errors ($f_{\rm NL}= 0.75^{+40.2}_{-44.5}$), which can only be reduced by imposing the Planck 2018 prior. Our results show that significant progress on understanding and controlling foreground removal effects is necessary for studying PNG with H i intensity mapping.


2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Jiaqi Song ◽  
Haihong Tao

Noncircular signals are widely used in the area of radar, sonar, and wireless communication array systems, which can offer more accurate estimates and detect more sources. In this paper, the noncircular signals are employed to improve source localization accuracy and identifiability. Firstly, an extended real-valued covariance matrix is constructed to transform complex-valued computation into real-valued computation. Based on the property of noncircular signals and symmetric uniform linear array (SULA) which consist of dual-polarization sensors, the array steering vectors can be separated into the source position parameters and the nuisance parameter. Therefore, the rank reduction (RARE) estimators are adopted to estimate the source localization parameters in sequence. By utilizing polarization information of sources and real-valued computation, the maximum number of resolvable sources, estimation accuracy, and resolution can be improved. Numerical simulations demonstrate that the proposed method outperforms the existing methods in both resolution and estimation accuracy.


2015 ◽  
Vol 448 (2) ◽  
pp. 1389-1401 ◽  
Author(s):  
L. Clerkin ◽  
D. Kirk ◽  
O. Lahav ◽  
F. B. Abdalla ◽  
E. Gaztañaga
Keyword(s):  

2019 ◽  
Vol 36 (2) ◽  
pp. 347-366 ◽  
Author(s):  
José Luis Montiel Olea

This article studies a classical problem in statistical decision theory: a hypothesis test of a sharp null in the presence of a nuisance parameter. The main contribution of this article is a characterization of two finite-sample properties often deemed reasonable in this environment: admissibility and similarity. Admissibility means that a test cannot be improved uniformly over the parameter space. Similarity requires the null rejection probability to be unaffected by the nuisance parameter.The characterization result has two parts. The first part—established by Chernozhukov, Hansen, and Jansson (2009, Econometric Theory 25, 806–818)—states that maximizing weighted average power (WAP) subject to a similarity constraint suffices to generate admissible, similar tests. The second part—hereby established—states that constrained WAP maximization is (essentially) a necessary condition for a test to be admissible and similar. The characterization result shows that choosing an admissible, similar test is tantamount to selecting a particular weight function to report weighted average power. This result applies to full vector inference with a nuisance parameter, not to subvector inference.The article also revisits the theory of testing in the instrumental variables model. Specifically—and in light of the relevance of the weighted average power criterion in the main theoretical result—the article suggests a weight function for the structural parameters of the homoskedastic instrumental variables model, based on the priors proposed by Chamberlain (2007). The corresponding test is, by construction, admissible and similar. In addition, the test is shown to have finite- and large-sample properties comparable to those of the conditional likelihood ratio test.


2009 ◽  
Vol 37 (2) ◽  
pp. 905-938 ◽  
Author(s):  
James O. Berger ◽  
José M. Bernardo ◽  
Dongchu Sun

Sign in / Sign up

Export Citation Format

Share Document