An electron diffraction and bond valence sum study of the space group symmetries and structures of the photocatalytic 1:1 ordered A2InNbO6 double perovskites (A=Ca2+, Sr2+, Ba2+)

2004 ◽  
Vol 177 (3) ◽  
pp. 979-986 ◽  
Author(s):  
V. Ting ◽  
Y. Liu ◽  
R.L. Withers ◽  
E. Krausz
2019 ◽  
Vol 57 (4) ◽  
pp. 519-528 ◽  
Author(s):  
Frank C. Hawthorne ◽  
Elena Sokolova ◽  
Atali A. Agakhanov ◽  
Leonid A. Pautov ◽  
Vladimir Yu. Karpenko

Abstract The crystal structure of polylithionite-1M from Darai-Pioz, (K0.97Na0.03Rb0.01)Σ1.01(Li2.04Al0.84 Ti4+0.09Fe3+0.03)Σ3.00(Si3.98Al0.02)O10[F1.68(OH)0.33]Σ2, a 5.1974(4), b 8.9753(6), c 10.0556(7) Å, β 100.454(1)°, V 461.30(6) Å3, space group C2, Z = 2, was refined to R1 = 1.99% using MoKα X-radiation. In the space group C2, there are three octahedrally coordinated M sites in the 1M mica structure: the M(1) site is occupied by Li+ and minor vacancy that is likely locally associated with Ti4+ at the M(2) site; the M(2) site is occupied dominantly by Al3+, with other minor divalent to tetravalent cations; the M(3) site is completely occupied by Li+. In the space group C2, the structure is completely ordered. Each non-bridging O2– ion is surrounded by an ordered arrangement of 2Li+ + Al3+ + Si4+ with an incident bond-valence sum of 1.95 vu (valence units). The F– ion is coordinated by Li+ + Li+ + Al3+ with an incident bond-valence sum of 0.84 vu (values around F– generally tend to be lower than ideal). Thus, the valence-sum rule is satisfied, both long range and short range. In the space group C2/m, there is long-range order but not short-range order. There are three different short-range arrangements, one of which has bond-valence deficiencies of 0.38 and 0.49 vu around the non-bridging O2– ion and the F– ion, destabilizing the structure relative to the more ordered arrangement of the C2 structure, which conforms more closely to the valence-sum rule. The drive to lower the symmetry in polylithionite-1M from C2/m to C2 comes from the short-range bond-valence requirements of the structure.


2006 ◽  
Vol 179 (2) ◽  
pp. 341-348 ◽  
Author(s):  
Frank J. Brink ◽  
Ray L. Withers ◽  
Stéphane Cordier ◽  
Marcel Poulain

Author(s):  
R. Herrera ◽  
A. Gómez

Computer simulations of electron diffraction patterns and images are an essential step in the process of structure and/or defect elucidation. So far most programs are designed to deal specifically with crystals, requiring frequently the space group as imput parameter. In such programs the deviations from perfect periodicity are dealt with by means of “periodic continuation”.However, for many applications involving amorphous materials, quasiperiodic materials or simply crystals with defects (including finite shape effects) it is convenient to have an algorithm capable of handling non-periodicity. Our program “HeGo” is an implementation of the well known multislice equations in which no periodicity assumption is made whatsoever. The salient features of our implementation are: 1) We made Gaussian fits to the atomic scattering factors for electrons covering the whole periodic table and the ranges [0-2]Å−1 and [2-6]Å−1.


2012 ◽  
Vol 45 (5) ◽  
pp. 1054-1056 ◽  
Author(s):  
Matthew Sale ◽  
Maxim Avdeev

A computer program,3DBVSMAPPER, was developed to generate bond-valence sum maps and bond-valence energy landscapes with minimal user intervention. The program is designed to calculate the spatial distributions of bond-valence values on three-dimensional grids, and to identify infinitely connected isosurfaces in these spatial distributions for a given bond-valence mismatch or energy threshold and extract their volume and surface area characteristics. It is implemented in the Perl scripting language embedded in AccelrysMaterials Studioand has the capacity to process automatically an unlimited number of materials using crystallographic information files as input.


Author(s):  
Magdolna Hargittai ◽  
István Hargittai
Keyword(s):  

1999 ◽  
Vol 32 (2) ◽  
pp. 341-344 ◽  
Author(s):  
Javier González-Platas ◽  
Cristina González-Silgo ◽  
Catalina Ruiz-Pérez

VALMAP2.0 is a Microsoft-Windows-based program designed to assist material scientists in accurate structural investigations. The aim ofVALMAPis to calculate the sum of bond valences that a particular atom would have if it were placed at any arbitrary point in the crystal. By movement of this atom through all possible points, its valence-sum contour map can be displayed. Parameters of the bond-valence model are available and may be modified. The program was tested in a number of cases and two examples of applications are reported: (i) finding probable atom sites in crystal structures; (ii) displacive and order–disorder phase transition mechanisms, analysing steric effects.


1998 ◽  
Vol 12 (22) ◽  
pp. 2279-2303 ◽  
Author(s):  
G. L. Song ◽  
L. A. Bursill

The structure of crystalline α-AlMnSi is examined by electron diffraction. Six distinct zone axes are examined, including both normal crystallographic and non-crystallographic zone axes, allowing the space group symmetry of α-AlMnSi to be studied. A method for indexing the non-crystallographic zone axis diffraction patterns, which involve reflections from several nearby crystallographic zone axes, is described and applied to electron diffraction patterns of the quasi-5-fold, 3-fold and 2-fold axes of the icosahedral building units of cubic α-AlMnSi. These are compared with electron diffraction patterns from the corresponding 5-fold, 3-fold and 2-fold axes of the quasicrystalline phase i-AlMnSi, from which we may make some conclusions concerning the occupancies of the icosahedral units in i-AlMnSi. Electron diffraction patterns characteristic of [Formula: see text] were obtained for thicker specimens. However, for thin specimens, as used for HRTEM imaging, the electron diffraction patterns were characteristic of [Formula: see text] space group symmetry. This unusual behaviour arises because the structural basis for the [Formula: see text] to [Formula: see text] phase transition is a weak effect, involving changes in occupancy of the icosahedral structural elements located at the corners (double-MacKay icosahedra) and body-centers (MacKay icosahedra) of the cubic unit cell. The effects of changing the occupancies of the outer shells of the MI and DMI structural units on the diffraction intensities of the weak reflections were examined. Thus, calculation of the dynamical diffraction amplitudes shows that in fact the weak reflections characteristic of [Formula: see text] only develop sufficient intensity if two conditions are satisfied: namely (1) the crystal thickness exceeds approx. 50 nm and (2) if a significant proportion of [Formula: see text] occupancies are included in the structural model. By fitting the observed thickness variation of the diffraction intensities we propose a new set of occupancies for α-AlMnSi, which is consistent with the electron, X-ray and neutron diffraction data.


Sign in / Sign up

Export Citation Format

Share Document